File size: 25,113 Bytes
9c29c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
2023-10-12 20:36:34,417 ----------------------------------------------------------------------------------------------------
2023-10-12 20:36:34,419 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-12 20:36:34,420 ----------------------------------------------------------------------------------------------------
2023-10-12 20:36:34,420 MultiCorpus: 7936 train + 992 dev + 992 test sentences
 - NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr
2023-10-12 20:36:34,420 ----------------------------------------------------------------------------------------------------
2023-10-12 20:36:34,420 Train:  7936 sentences
2023-10-12 20:36:34,420         (train_with_dev=False, train_with_test=False)
2023-10-12 20:36:34,421 ----------------------------------------------------------------------------------------------------
2023-10-12 20:36:34,421 Training Params:
2023-10-12 20:36:34,421  - learning_rate: "0.00015" 
2023-10-12 20:36:34,421  - mini_batch_size: "8"
2023-10-12 20:36:34,421  - max_epochs: "10"
2023-10-12 20:36:34,421  - shuffle: "True"
2023-10-12 20:36:34,421 ----------------------------------------------------------------------------------------------------
2023-10-12 20:36:34,421 Plugins:
2023-10-12 20:36:34,421  - TensorboardLogger
2023-10-12 20:36:34,421  - LinearScheduler | warmup_fraction: '0.1'
2023-10-12 20:36:34,422 ----------------------------------------------------------------------------------------------------
2023-10-12 20:36:34,422 Final evaluation on model from best epoch (best-model.pt)
2023-10-12 20:36:34,422  - metric: "('micro avg', 'f1-score')"
2023-10-12 20:36:34,422 ----------------------------------------------------------------------------------------------------
2023-10-12 20:36:34,422 Computation:
2023-10-12 20:36:34,422  - compute on device: cuda:0
2023-10-12 20:36:34,422  - embedding storage: none
2023-10-12 20:36:34,422 ----------------------------------------------------------------------------------------------------
2023-10-12 20:36:34,422 Model training base path: "hmbench-icdar/fr-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-3"
2023-10-12 20:36:34,422 ----------------------------------------------------------------------------------------------------
2023-10-12 20:36:34,423 ----------------------------------------------------------------------------------------------------
2023-10-12 20:36:34,423 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-12 20:37:23,526 epoch 1 - iter 99/992 - loss 2.53940455 - time (sec): 49.10 - samples/sec: 327.17 - lr: 0.000015 - momentum: 0.000000
2023-10-12 20:38:09,552 epoch 1 - iter 198/992 - loss 2.45209354 - time (sec): 95.13 - samples/sec: 334.01 - lr: 0.000030 - momentum: 0.000000
2023-10-12 20:38:56,579 epoch 1 - iter 297/992 - loss 2.23771454 - time (sec): 142.15 - samples/sec: 342.90 - lr: 0.000045 - momentum: 0.000000
2023-10-12 20:39:47,556 epoch 1 - iter 396/992 - loss 2.00240804 - time (sec): 193.13 - samples/sec: 337.89 - lr: 0.000060 - momentum: 0.000000
2023-10-12 20:40:37,028 epoch 1 - iter 495/992 - loss 1.75078774 - time (sec): 242.60 - samples/sec: 338.44 - lr: 0.000075 - momentum: 0.000000
2023-10-12 20:41:27,744 epoch 1 - iter 594/992 - loss 1.53136792 - time (sec): 293.32 - samples/sec: 335.30 - lr: 0.000090 - momentum: 0.000000
2023-10-12 20:42:16,877 epoch 1 - iter 693/992 - loss 1.36980903 - time (sec): 342.45 - samples/sec: 332.96 - lr: 0.000105 - momentum: 0.000000
2023-10-12 20:43:05,181 epoch 1 - iter 792/992 - loss 1.23246121 - time (sec): 390.76 - samples/sec: 334.01 - lr: 0.000120 - momentum: 0.000000
2023-10-12 20:43:58,462 epoch 1 - iter 891/992 - loss 1.11904567 - time (sec): 444.04 - samples/sec: 332.10 - lr: 0.000135 - momentum: 0.000000
2023-10-12 20:44:49,457 epoch 1 - iter 990/992 - loss 1.02887479 - time (sec): 495.03 - samples/sec: 330.68 - lr: 0.000150 - momentum: 0.000000
2023-10-12 20:44:50,413 ----------------------------------------------------------------------------------------------------
2023-10-12 20:44:50,413 EPOCH 1 done: loss 1.0276 - lr: 0.000150
2023-10-12 20:45:15,991 DEV : loss 0.16679786145687103 - f1-score (micro avg)  0.492
2023-10-12 20:45:16,031 saving best model
2023-10-12 20:45:16,981 ----------------------------------------------------------------------------------------------------
2023-10-12 20:46:06,496 epoch 2 - iter 99/992 - loss 0.17077119 - time (sec): 49.51 - samples/sec: 340.13 - lr: 0.000148 - momentum: 0.000000
2023-10-12 20:46:56,296 epoch 2 - iter 198/992 - loss 0.16840803 - time (sec): 99.31 - samples/sec: 332.86 - lr: 0.000147 - momentum: 0.000000
2023-10-12 20:47:44,810 epoch 2 - iter 297/992 - loss 0.16705195 - time (sec): 147.83 - samples/sec: 333.86 - lr: 0.000145 - momentum: 0.000000
2023-10-12 20:48:32,058 epoch 2 - iter 396/992 - loss 0.15897276 - time (sec): 195.08 - samples/sec: 339.12 - lr: 0.000143 - momentum: 0.000000
2023-10-12 20:49:21,939 epoch 2 - iter 495/992 - loss 0.15604786 - time (sec): 244.96 - samples/sec: 335.31 - lr: 0.000142 - momentum: 0.000000
2023-10-12 20:50:12,969 epoch 2 - iter 594/992 - loss 0.15226274 - time (sec): 295.99 - samples/sec: 334.72 - lr: 0.000140 - momentum: 0.000000
2023-10-12 20:51:01,723 epoch 2 - iter 693/992 - loss 0.14825625 - time (sec): 344.74 - samples/sec: 336.07 - lr: 0.000138 - momentum: 0.000000
2023-10-12 20:51:55,514 epoch 2 - iter 792/992 - loss 0.14565453 - time (sec): 398.53 - samples/sec: 330.04 - lr: 0.000137 - momentum: 0.000000
2023-10-12 20:52:44,252 epoch 2 - iter 891/992 - loss 0.14261297 - time (sec): 447.27 - samples/sec: 329.90 - lr: 0.000135 - momentum: 0.000000
2023-10-12 20:53:32,986 epoch 2 - iter 990/992 - loss 0.14067570 - time (sec): 496.00 - samples/sec: 330.13 - lr: 0.000133 - momentum: 0.000000
2023-10-12 20:53:33,941 ----------------------------------------------------------------------------------------------------
2023-10-12 20:53:33,942 EPOCH 2 done: loss 0.1406 - lr: 0.000133
2023-10-12 20:53:59,736 DEV : loss 0.09202314913272858 - f1-score (micro avg)  0.7419
2023-10-12 20:53:59,777 saving best model
2023-10-12 20:54:02,426 ----------------------------------------------------------------------------------------------------
2023-10-12 20:54:56,733 epoch 3 - iter 99/992 - loss 0.08481471 - time (sec): 54.29 - samples/sec: 316.06 - lr: 0.000132 - momentum: 0.000000
2023-10-12 20:55:48,391 epoch 3 - iter 198/992 - loss 0.08839525 - time (sec): 105.95 - samples/sec: 313.11 - lr: 0.000130 - momentum: 0.000000
2023-10-12 20:56:36,336 epoch 3 - iter 297/992 - loss 0.08581007 - time (sec): 153.89 - samples/sec: 317.80 - lr: 0.000128 - momentum: 0.000000
2023-10-12 20:57:25,973 epoch 3 - iter 396/992 - loss 0.08230993 - time (sec): 203.53 - samples/sec: 317.82 - lr: 0.000127 - momentum: 0.000000
2023-10-12 20:58:15,723 epoch 3 - iter 495/992 - loss 0.08191812 - time (sec): 253.28 - samples/sec: 321.05 - lr: 0.000125 - momentum: 0.000000
2023-10-12 20:59:05,929 epoch 3 - iter 594/992 - loss 0.08257402 - time (sec): 303.49 - samples/sec: 321.37 - lr: 0.000123 - momentum: 0.000000
2023-10-12 20:59:53,635 epoch 3 - iter 693/992 - loss 0.08166994 - time (sec): 351.19 - samples/sec: 322.98 - lr: 0.000122 - momentum: 0.000000
2023-10-12 21:00:42,974 epoch 3 - iter 792/992 - loss 0.08101549 - time (sec): 400.53 - samples/sec: 324.25 - lr: 0.000120 - momentum: 0.000000
2023-10-12 21:01:32,280 epoch 3 - iter 891/992 - loss 0.08026505 - time (sec): 449.84 - samples/sec: 325.56 - lr: 0.000118 - momentum: 0.000000
2023-10-12 21:02:23,827 epoch 3 - iter 990/992 - loss 0.08033861 - time (sec): 501.38 - samples/sec: 326.64 - lr: 0.000117 - momentum: 0.000000
2023-10-12 21:02:24,696 ----------------------------------------------------------------------------------------------------
2023-10-12 21:02:24,696 EPOCH 3 done: loss 0.0803 - lr: 0.000117
2023-10-12 21:02:49,665 DEV : loss 0.08990765362977982 - f1-score (micro avg)  0.7604
2023-10-12 21:02:49,705 saving best model
2023-10-12 21:02:52,306 ----------------------------------------------------------------------------------------------------
2023-10-12 21:03:41,885 epoch 4 - iter 99/992 - loss 0.05709566 - time (sec): 49.57 - samples/sec: 351.31 - lr: 0.000115 - momentum: 0.000000
2023-10-12 21:04:31,315 epoch 4 - iter 198/992 - loss 0.05384534 - time (sec): 99.00 - samples/sec: 335.44 - lr: 0.000113 - momentum: 0.000000
2023-10-12 21:05:20,247 epoch 4 - iter 297/992 - loss 0.05406144 - time (sec): 147.94 - samples/sec: 334.00 - lr: 0.000112 - momentum: 0.000000
2023-10-12 21:06:07,442 epoch 4 - iter 396/992 - loss 0.05302751 - time (sec): 195.13 - samples/sec: 336.83 - lr: 0.000110 - momentum: 0.000000
2023-10-12 21:06:53,930 epoch 4 - iter 495/992 - loss 0.05258435 - time (sec): 241.62 - samples/sec: 339.91 - lr: 0.000108 - momentum: 0.000000
2023-10-12 21:07:42,776 epoch 4 - iter 594/992 - loss 0.05291144 - time (sec): 290.47 - samples/sec: 337.89 - lr: 0.000107 - momentum: 0.000000
2023-10-12 21:08:31,390 epoch 4 - iter 693/992 - loss 0.05440967 - time (sec): 339.08 - samples/sec: 335.36 - lr: 0.000105 - momentum: 0.000000
2023-10-12 21:09:21,204 epoch 4 - iter 792/992 - loss 0.05467823 - time (sec): 388.89 - samples/sec: 335.88 - lr: 0.000103 - momentum: 0.000000
2023-10-12 21:10:13,890 epoch 4 - iter 891/992 - loss 0.05499260 - time (sec): 441.58 - samples/sec: 332.35 - lr: 0.000102 - momentum: 0.000000
2023-10-12 21:11:07,827 epoch 4 - iter 990/992 - loss 0.05480641 - time (sec): 495.52 - samples/sec: 330.33 - lr: 0.000100 - momentum: 0.000000
2023-10-12 21:11:08,918 ----------------------------------------------------------------------------------------------------
2023-10-12 21:11:08,919 EPOCH 4 done: loss 0.0550 - lr: 0.000100
2023-10-12 21:11:34,092 DEV : loss 0.11015438288450241 - f1-score (micro avg)  0.7516
2023-10-12 21:11:34,132 ----------------------------------------------------------------------------------------------------
2023-10-12 21:12:29,220 epoch 5 - iter 99/992 - loss 0.03490950 - time (sec): 55.09 - samples/sec: 281.83 - lr: 0.000098 - momentum: 0.000000
2023-10-12 21:13:19,557 epoch 5 - iter 198/992 - loss 0.03110268 - time (sec): 105.42 - samples/sec: 302.69 - lr: 0.000097 - momentum: 0.000000
2023-10-12 21:14:08,872 epoch 5 - iter 297/992 - loss 0.03567964 - time (sec): 154.74 - samples/sec: 313.09 - lr: 0.000095 - momentum: 0.000000
2023-10-12 21:15:00,906 epoch 5 - iter 396/992 - loss 0.03894388 - time (sec): 206.77 - samples/sec: 307.97 - lr: 0.000093 - momentum: 0.000000
2023-10-12 21:15:50,989 epoch 5 - iter 495/992 - loss 0.03871853 - time (sec): 256.85 - samples/sec: 308.70 - lr: 0.000092 - momentum: 0.000000
2023-10-12 21:16:42,127 epoch 5 - iter 594/992 - loss 0.03866059 - time (sec): 307.99 - samples/sec: 311.40 - lr: 0.000090 - momentum: 0.000000
2023-10-12 21:17:33,881 epoch 5 - iter 693/992 - loss 0.03769547 - time (sec): 359.75 - samples/sec: 316.19 - lr: 0.000088 - momentum: 0.000000
2023-10-12 21:18:22,487 epoch 5 - iter 792/992 - loss 0.03775340 - time (sec): 408.35 - samples/sec: 319.19 - lr: 0.000087 - momentum: 0.000000
2023-10-12 21:19:12,969 epoch 5 - iter 891/992 - loss 0.03942820 - time (sec): 458.83 - samples/sec: 319.35 - lr: 0.000085 - momentum: 0.000000
2023-10-12 21:20:05,611 epoch 5 - iter 990/992 - loss 0.03993968 - time (sec): 511.48 - samples/sec: 319.98 - lr: 0.000083 - momentum: 0.000000
2023-10-12 21:20:06,684 ----------------------------------------------------------------------------------------------------
2023-10-12 21:20:06,685 EPOCH 5 done: loss 0.0399 - lr: 0.000083
2023-10-12 21:20:34,573 DEV : loss 0.12319868057966232 - f1-score (micro avg)  0.7494
2023-10-12 21:20:34,627 ----------------------------------------------------------------------------------------------------
2023-10-12 21:21:25,537 epoch 6 - iter 99/992 - loss 0.03811252 - time (sec): 50.91 - samples/sec: 319.23 - lr: 0.000082 - momentum: 0.000000
2023-10-12 21:22:16,408 epoch 6 - iter 198/992 - loss 0.03228055 - time (sec): 101.78 - samples/sec: 316.51 - lr: 0.000080 - momentum: 0.000000
2023-10-12 21:23:07,761 epoch 6 - iter 297/992 - loss 0.03228149 - time (sec): 153.13 - samples/sec: 318.71 - lr: 0.000078 - momentum: 0.000000
2023-10-12 21:24:00,236 epoch 6 - iter 396/992 - loss 0.03210612 - time (sec): 205.61 - samples/sec: 318.41 - lr: 0.000077 - momentum: 0.000000
2023-10-12 21:24:53,252 epoch 6 - iter 495/992 - loss 0.03193389 - time (sec): 258.62 - samples/sec: 317.54 - lr: 0.000075 - momentum: 0.000000
2023-10-12 21:25:42,174 epoch 6 - iter 594/992 - loss 0.03222843 - time (sec): 307.54 - samples/sec: 318.60 - lr: 0.000073 - momentum: 0.000000
2023-10-12 21:26:32,031 epoch 6 - iter 693/992 - loss 0.03237733 - time (sec): 357.40 - samples/sec: 322.22 - lr: 0.000072 - momentum: 0.000000
2023-10-12 21:27:23,817 epoch 6 - iter 792/992 - loss 0.03084620 - time (sec): 409.19 - samples/sec: 321.91 - lr: 0.000070 - momentum: 0.000000
2023-10-12 21:28:16,696 epoch 6 - iter 891/992 - loss 0.03172155 - time (sec): 462.07 - samples/sec: 321.02 - lr: 0.000068 - momentum: 0.000000
2023-10-12 21:29:06,526 epoch 6 - iter 990/992 - loss 0.03169299 - time (sec): 511.90 - samples/sec: 319.93 - lr: 0.000067 - momentum: 0.000000
2023-10-12 21:29:07,472 ----------------------------------------------------------------------------------------------------
2023-10-12 21:29:07,473 EPOCH 6 done: loss 0.0317 - lr: 0.000067
2023-10-12 21:29:34,854 DEV : loss 0.1523526906967163 - f1-score (micro avg)  0.745
2023-10-12 21:29:34,898 ----------------------------------------------------------------------------------------------------
2023-10-12 21:30:29,230 epoch 7 - iter 99/992 - loss 0.01836233 - time (sec): 54.33 - samples/sec: 297.39 - lr: 0.000065 - momentum: 0.000000
2023-10-12 21:31:25,213 epoch 7 - iter 198/992 - loss 0.01888426 - time (sec): 110.31 - samples/sec: 298.53 - lr: 0.000063 - momentum: 0.000000
2023-10-12 21:32:16,337 epoch 7 - iter 297/992 - loss 0.02103087 - time (sec): 161.44 - samples/sec: 303.30 - lr: 0.000062 - momentum: 0.000000
2023-10-12 21:33:10,363 epoch 7 - iter 396/992 - loss 0.02296196 - time (sec): 215.46 - samples/sec: 303.71 - lr: 0.000060 - momentum: 0.000000
2023-10-12 21:34:04,597 epoch 7 - iter 495/992 - loss 0.02381151 - time (sec): 269.70 - samples/sec: 302.28 - lr: 0.000058 - momentum: 0.000000
2023-10-12 21:34:59,557 epoch 7 - iter 594/992 - loss 0.02454321 - time (sec): 324.66 - samples/sec: 302.98 - lr: 0.000057 - momentum: 0.000000
2023-10-12 21:35:53,242 epoch 7 - iter 693/992 - loss 0.02362879 - time (sec): 378.34 - samples/sec: 303.19 - lr: 0.000055 - momentum: 0.000000
2023-10-12 21:36:41,463 epoch 7 - iter 792/992 - loss 0.02358871 - time (sec): 426.56 - samples/sec: 307.73 - lr: 0.000053 - momentum: 0.000000
2023-10-12 21:37:29,049 epoch 7 - iter 891/992 - loss 0.02327723 - time (sec): 474.15 - samples/sec: 310.66 - lr: 0.000052 - momentum: 0.000000
2023-10-12 21:38:17,393 epoch 7 - iter 990/992 - loss 0.02414669 - time (sec): 522.49 - samples/sec: 313.30 - lr: 0.000050 - momentum: 0.000000
2023-10-12 21:38:18,316 ----------------------------------------------------------------------------------------------------
2023-10-12 21:38:18,316 EPOCH 7 done: loss 0.0241 - lr: 0.000050
2023-10-12 21:38:44,375 DEV : loss 0.16238392889499664 - f1-score (micro avg)  0.7575
2023-10-12 21:38:44,416 ----------------------------------------------------------------------------------------------------
2023-10-12 21:39:32,311 epoch 8 - iter 99/992 - loss 0.02098412 - time (sec): 47.89 - samples/sec: 345.39 - lr: 0.000048 - momentum: 0.000000
2023-10-12 21:40:21,125 epoch 8 - iter 198/992 - loss 0.02001400 - time (sec): 96.71 - samples/sec: 330.15 - lr: 0.000047 - momentum: 0.000000
2023-10-12 21:41:11,175 epoch 8 - iter 297/992 - loss 0.01778574 - time (sec): 146.76 - samples/sec: 332.28 - lr: 0.000045 - momentum: 0.000000
2023-10-12 21:42:00,933 epoch 8 - iter 396/992 - loss 0.01851136 - time (sec): 196.51 - samples/sec: 333.89 - lr: 0.000043 - momentum: 0.000000
2023-10-12 21:42:47,636 epoch 8 - iter 495/992 - loss 0.01977844 - time (sec): 243.22 - samples/sec: 337.22 - lr: 0.000042 - momentum: 0.000000
2023-10-12 21:43:35,853 epoch 8 - iter 594/992 - loss 0.01974787 - time (sec): 291.43 - samples/sec: 336.66 - lr: 0.000040 - momentum: 0.000000
2023-10-12 21:44:21,954 epoch 8 - iter 693/992 - loss 0.01908591 - time (sec): 337.54 - samples/sec: 338.15 - lr: 0.000038 - momentum: 0.000000
2023-10-12 21:45:09,680 epoch 8 - iter 792/992 - loss 0.01817565 - time (sec): 385.26 - samples/sec: 340.05 - lr: 0.000037 - momentum: 0.000000
2023-10-12 21:45:56,435 epoch 8 - iter 891/992 - loss 0.01823549 - time (sec): 432.02 - samples/sec: 340.11 - lr: 0.000035 - momentum: 0.000000
2023-10-12 21:46:44,381 epoch 8 - iter 990/992 - loss 0.01881597 - time (sec): 479.96 - samples/sec: 340.91 - lr: 0.000033 - momentum: 0.000000
2023-10-12 21:46:45,354 ----------------------------------------------------------------------------------------------------
2023-10-12 21:46:45,354 EPOCH 8 done: loss 0.0188 - lr: 0.000033
2023-10-12 21:47:10,756 DEV : loss 0.1798100620508194 - f1-score (micro avg)  0.7504
2023-10-12 21:47:10,796 ----------------------------------------------------------------------------------------------------
2023-10-12 21:47:57,915 epoch 9 - iter 99/992 - loss 0.01330830 - time (sec): 47.12 - samples/sec: 328.12 - lr: 0.000032 - momentum: 0.000000
2023-10-12 21:48:46,407 epoch 9 - iter 198/992 - loss 0.01224787 - time (sec): 95.61 - samples/sec: 322.93 - lr: 0.000030 - momentum: 0.000000
2023-10-12 21:49:35,505 epoch 9 - iter 297/992 - loss 0.01382402 - time (sec): 144.71 - samples/sec: 326.64 - lr: 0.000028 - momentum: 0.000000
2023-10-12 21:50:25,041 epoch 9 - iter 396/992 - loss 0.01437517 - time (sec): 194.24 - samples/sec: 331.02 - lr: 0.000027 - momentum: 0.000000
2023-10-12 21:51:12,360 epoch 9 - iter 495/992 - loss 0.01368674 - time (sec): 241.56 - samples/sec: 334.81 - lr: 0.000025 - momentum: 0.000000
2023-10-12 21:51:59,940 epoch 9 - iter 594/992 - loss 0.01453578 - time (sec): 289.14 - samples/sec: 340.98 - lr: 0.000023 - momentum: 0.000000
2023-10-12 21:52:46,742 epoch 9 - iter 693/992 - loss 0.01553987 - time (sec): 335.94 - samples/sec: 343.65 - lr: 0.000022 - momentum: 0.000000
2023-10-12 21:53:34,899 epoch 9 - iter 792/992 - loss 0.01569527 - time (sec): 384.10 - samples/sec: 343.96 - lr: 0.000020 - momentum: 0.000000
2023-10-12 21:54:22,482 epoch 9 - iter 891/992 - loss 0.01579337 - time (sec): 431.68 - samples/sec: 344.20 - lr: 0.000018 - momentum: 0.000000
2023-10-12 21:55:10,034 epoch 9 - iter 990/992 - loss 0.01620441 - time (sec): 479.24 - samples/sec: 341.45 - lr: 0.000017 - momentum: 0.000000
2023-10-12 21:55:10,982 ----------------------------------------------------------------------------------------------------
2023-10-12 21:55:10,982 EPOCH 9 done: loss 0.0162 - lr: 0.000017
2023-10-12 21:55:37,009 DEV : loss 0.18687152862548828 - f1-score (micro avg)  0.7575
2023-10-12 21:55:37,055 ----------------------------------------------------------------------------------------------------
2023-10-12 21:56:24,933 epoch 10 - iter 99/992 - loss 0.00770149 - time (sec): 47.88 - samples/sec: 344.62 - lr: 0.000015 - momentum: 0.000000
2023-10-12 21:57:12,835 epoch 10 - iter 198/992 - loss 0.00989841 - time (sec): 95.78 - samples/sec: 346.95 - lr: 0.000013 - momentum: 0.000000
2023-10-12 21:58:00,731 epoch 10 - iter 297/992 - loss 0.01166225 - time (sec): 143.67 - samples/sec: 348.74 - lr: 0.000012 - momentum: 0.000000
2023-10-12 21:58:46,948 epoch 10 - iter 396/992 - loss 0.01166889 - time (sec): 189.89 - samples/sec: 348.12 - lr: 0.000010 - momentum: 0.000000
2023-10-12 21:59:35,210 epoch 10 - iter 495/992 - loss 0.01103474 - time (sec): 238.15 - samples/sec: 346.06 - lr: 0.000008 - momentum: 0.000000
2023-10-12 22:00:23,313 epoch 10 - iter 594/992 - loss 0.01167473 - time (sec): 286.26 - samples/sec: 343.43 - lr: 0.000007 - momentum: 0.000000
2023-10-12 22:01:12,909 epoch 10 - iter 693/992 - loss 0.01237909 - time (sec): 335.85 - samples/sec: 342.47 - lr: 0.000005 - momentum: 0.000000
2023-10-12 22:01:59,272 epoch 10 - iter 792/992 - loss 0.01251453 - time (sec): 382.21 - samples/sec: 342.30 - lr: 0.000004 - momentum: 0.000000
2023-10-12 22:02:46,892 epoch 10 - iter 891/992 - loss 0.01256245 - time (sec): 429.83 - samples/sec: 343.86 - lr: 0.000002 - momentum: 0.000000
2023-10-12 22:03:34,464 epoch 10 - iter 990/992 - loss 0.01261074 - time (sec): 477.41 - samples/sec: 342.85 - lr: 0.000000 - momentum: 0.000000
2023-10-12 22:03:35,396 ----------------------------------------------------------------------------------------------------
2023-10-12 22:03:35,397 EPOCH 10 done: loss 0.0126 - lr: 0.000000
2023-10-12 22:04:01,331 DEV : loss 0.19634360074996948 - f1-score (micro avg)  0.7592
2023-10-12 22:04:02,299 ----------------------------------------------------------------------------------------------------
2023-10-12 22:04:02,301 Loading model from best epoch ...
2023-10-12 22:04:05,962 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
2023-10-12 22:04:30,881 
Results:
- F-score (micro) 0.7525
- F-score (macro) 0.6889
- Accuracy 0.6284

By class:
              precision    recall  f1-score   support

         LOC     0.7875    0.8092    0.7982       655
         PER     0.7255    0.8296    0.7741       223
         ORG     0.4595    0.5354    0.4945       127

   micro avg     0.7277    0.7791    0.7525      1005
   macro avg     0.6575    0.7247    0.6889      1005
weighted avg     0.7323    0.7791    0.7545      1005

2023-10-12 22:04:30,881 ----------------------------------------------------------------------------------------------------