File size: 24,205 Bytes
74c6741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
2023-10-18 18:52:52,741 ----------------------------------------------------------------------------------------------------
2023-10-18 18:52:52,741 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 128)
        (position_embeddings): Embedding(512, 128)
        (token_type_embeddings): Embedding(2, 128)
        (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-1): 2 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=128, out_features=128, bias=True)
                (key): Linear(in_features=128, out_features=128, bias=True)
                (value): Linear(in_features=128, out_features=128, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=128, out_features=128, bias=True)
                (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=128, out_features=512, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=512, out_features=128, bias=True)
              (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=128, out_features=128, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=128, out_features=21, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-18 18:52:52,741 ----------------------------------------------------------------------------------------------------
2023-10-18 18:52:52,742 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
 - NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
2023-10-18 18:52:52,742 ----------------------------------------------------------------------------------------------------
2023-10-18 18:52:52,742 Train:  5901 sentences
2023-10-18 18:52:52,742         (train_with_dev=False, train_with_test=False)
2023-10-18 18:52:52,742 ----------------------------------------------------------------------------------------------------
2023-10-18 18:52:52,742 Training Params:
2023-10-18 18:52:52,742  - learning_rate: "3e-05" 
2023-10-18 18:52:52,742  - mini_batch_size: "8"
2023-10-18 18:52:52,742  - max_epochs: "10"
2023-10-18 18:52:52,742  - shuffle: "True"
2023-10-18 18:52:52,742 ----------------------------------------------------------------------------------------------------
2023-10-18 18:52:52,742 Plugins:
2023-10-18 18:52:52,742  - TensorboardLogger
2023-10-18 18:52:52,742  - LinearScheduler | warmup_fraction: '0.1'
2023-10-18 18:52:52,742 ----------------------------------------------------------------------------------------------------
2023-10-18 18:52:52,742 Final evaluation on model from best epoch (best-model.pt)
2023-10-18 18:52:52,742  - metric: "('micro avg', 'f1-score')"
2023-10-18 18:52:52,742 ----------------------------------------------------------------------------------------------------
2023-10-18 18:52:52,742 Computation:
2023-10-18 18:52:52,742  - compute on device: cuda:0
2023-10-18 18:52:52,742  - embedding storage: none
2023-10-18 18:52:52,742 ----------------------------------------------------------------------------------------------------
2023-10-18 18:52:52,742 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-18 18:52:52,742 ----------------------------------------------------------------------------------------------------
2023-10-18 18:52:52,742 ----------------------------------------------------------------------------------------------------
2023-10-18 18:52:52,742 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-18 18:52:54,502 epoch 1 - iter 73/738 - loss 3.81874353 - time (sec): 1.76 - samples/sec: 9383.08 - lr: 0.000003 - momentum: 0.000000
2023-10-18 18:52:56,284 epoch 1 - iter 146/738 - loss 3.68234957 - time (sec): 3.54 - samples/sec: 8933.75 - lr: 0.000006 - momentum: 0.000000
2023-10-18 18:52:58,194 epoch 1 - iter 219/738 - loss 3.37630765 - time (sec): 5.45 - samples/sec: 9239.17 - lr: 0.000009 - momentum: 0.000000
2023-10-18 18:52:59,863 epoch 1 - iter 292/738 - loss 3.02254508 - time (sec): 7.12 - samples/sec: 9456.64 - lr: 0.000012 - momentum: 0.000000
2023-10-18 18:53:01,582 epoch 1 - iter 365/738 - loss 2.66170049 - time (sec): 8.84 - samples/sec: 9361.30 - lr: 0.000015 - momentum: 0.000000
2023-10-18 18:53:03,272 epoch 1 - iter 438/738 - loss 2.36532082 - time (sec): 10.53 - samples/sec: 9328.38 - lr: 0.000018 - momentum: 0.000000
2023-10-18 18:53:05,062 epoch 1 - iter 511/738 - loss 2.11033803 - time (sec): 12.32 - samples/sec: 9374.21 - lr: 0.000021 - momentum: 0.000000
2023-10-18 18:53:06,754 epoch 1 - iter 584/738 - loss 1.93341360 - time (sec): 14.01 - samples/sec: 9374.65 - lr: 0.000024 - momentum: 0.000000
2023-10-18 18:53:08,399 epoch 1 - iter 657/738 - loss 1.79640058 - time (sec): 15.66 - samples/sec: 9356.30 - lr: 0.000027 - momentum: 0.000000
2023-10-18 18:53:10,201 epoch 1 - iter 730/738 - loss 1.66035043 - time (sec): 17.46 - samples/sec: 9446.21 - lr: 0.000030 - momentum: 0.000000
2023-10-18 18:53:10,377 ----------------------------------------------------------------------------------------------------
2023-10-18 18:53:10,377 EPOCH 1 done: loss 1.6503 - lr: 0.000030
2023-10-18 18:53:13,137 DEV : loss 0.48679542541503906 - f1-score (micro avg)  0.0
2023-10-18 18:53:13,162 ----------------------------------------------------------------------------------------------------
2023-10-18 18:53:14,888 epoch 2 - iter 73/738 - loss 0.53428200 - time (sec): 1.73 - samples/sec: 9434.51 - lr: 0.000030 - momentum: 0.000000
2023-10-18 18:53:16,772 epoch 2 - iter 146/738 - loss 0.53407256 - time (sec): 3.61 - samples/sec: 9471.60 - lr: 0.000029 - momentum: 0.000000
2023-10-18 18:53:18,686 epoch 2 - iter 219/738 - loss 0.52996403 - time (sec): 5.52 - samples/sec: 9495.57 - lr: 0.000029 - momentum: 0.000000
2023-10-18 18:53:20,509 epoch 2 - iter 292/738 - loss 0.53131590 - time (sec): 7.35 - samples/sec: 9415.99 - lr: 0.000029 - momentum: 0.000000
2023-10-18 18:53:22,170 epoch 2 - iter 365/738 - loss 0.52158207 - time (sec): 9.01 - samples/sec: 9329.11 - lr: 0.000028 - momentum: 0.000000
2023-10-18 18:53:23,928 epoch 2 - iter 438/738 - loss 0.51558366 - time (sec): 10.77 - samples/sec: 9362.28 - lr: 0.000028 - momentum: 0.000000
2023-10-18 18:53:25,719 epoch 2 - iter 511/738 - loss 0.49662623 - time (sec): 12.56 - samples/sec: 9450.83 - lr: 0.000028 - momentum: 0.000000
2023-10-18 18:53:27,382 epoch 2 - iter 584/738 - loss 0.49077712 - time (sec): 14.22 - samples/sec: 9407.95 - lr: 0.000027 - momentum: 0.000000
2023-10-18 18:53:29,071 epoch 2 - iter 657/738 - loss 0.48484877 - time (sec): 15.91 - samples/sec: 9359.70 - lr: 0.000027 - momentum: 0.000000
2023-10-18 18:53:30,846 epoch 2 - iter 730/738 - loss 0.47901795 - time (sec): 17.68 - samples/sec: 9310.89 - lr: 0.000027 - momentum: 0.000000
2023-10-18 18:53:31,028 ----------------------------------------------------------------------------------------------------
2023-10-18 18:53:31,029 EPOCH 2 done: loss 0.4785 - lr: 0.000027
2023-10-18 18:53:38,087 DEV : loss 0.33998891711235046 - f1-score (micro avg)  0.2712
2023-10-18 18:53:38,113 saving best model
2023-10-18 18:53:38,141 ----------------------------------------------------------------------------------------------------
2023-10-18 18:53:39,865 epoch 3 - iter 73/738 - loss 0.40935465 - time (sec): 1.72 - samples/sec: 9824.36 - lr: 0.000026 - momentum: 0.000000
2023-10-18 18:53:41,684 epoch 3 - iter 146/738 - loss 0.41668843 - time (sec): 3.54 - samples/sec: 9634.44 - lr: 0.000026 - momentum: 0.000000
2023-10-18 18:53:43,431 epoch 3 - iter 219/738 - loss 0.41715597 - time (sec): 5.29 - samples/sec: 9480.32 - lr: 0.000026 - momentum: 0.000000
2023-10-18 18:53:45,146 epoch 3 - iter 292/738 - loss 0.41227420 - time (sec): 7.00 - samples/sec: 9447.71 - lr: 0.000025 - momentum: 0.000000
2023-10-18 18:53:46,726 epoch 3 - iter 365/738 - loss 0.41105667 - time (sec): 8.58 - samples/sec: 9313.13 - lr: 0.000025 - momentum: 0.000000
2023-10-18 18:53:48,446 epoch 3 - iter 438/738 - loss 0.40654280 - time (sec): 10.30 - samples/sec: 9335.83 - lr: 0.000025 - momentum: 0.000000
2023-10-18 18:53:50,257 epoch 3 - iter 511/738 - loss 0.39785791 - time (sec): 12.11 - samples/sec: 9328.86 - lr: 0.000024 - momentum: 0.000000
2023-10-18 18:53:52,055 epoch 3 - iter 584/738 - loss 0.39819890 - time (sec): 13.91 - samples/sec: 9430.47 - lr: 0.000024 - momentum: 0.000000
2023-10-18 18:53:53,814 epoch 3 - iter 657/738 - loss 0.39752472 - time (sec): 15.67 - samples/sec: 9377.86 - lr: 0.000024 - momentum: 0.000000
2023-10-18 18:53:55,587 epoch 3 - iter 730/738 - loss 0.39992408 - time (sec): 17.45 - samples/sec: 9426.87 - lr: 0.000023 - momentum: 0.000000
2023-10-18 18:53:55,783 ----------------------------------------------------------------------------------------------------
2023-10-18 18:53:55,784 EPOCH 3 done: loss 0.3998 - lr: 0.000023
2023-10-18 18:54:02,909 DEV : loss 0.30542612075805664 - f1-score (micro avg)  0.32
2023-10-18 18:54:02,934 saving best model
2023-10-18 18:54:02,977 ----------------------------------------------------------------------------------------------------
2023-10-18 18:54:04,826 epoch 4 - iter 73/738 - loss 0.36944310 - time (sec): 1.85 - samples/sec: 9510.06 - lr: 0.000023 - momentum: 0.000000
2023-10-18 18:54:06,476 epoch 4 - iter 146/738 - loss 0.35416470 - time (sec): 3.50 - samples/sec: 9315.70 - lr: 0.000023 - momentum: 0.000000
2023-10-18 18:54:08,180 epoch 4 - iter 219/738 - loss 0.36472416 - time (sec): 5.20 - samples/sec: 9343.76 - lr: 0.000022 - momentum: 0.000000
2023-10-18 18:54:09,909 epoch 4 - iter 292/738 - loss 0.36539814 - time (sec): 6.93 - samples/sec: 9519.65 - lr: 0.000022 - momentum: 0.000000
2023-10-18 18:54:11,751 epoch 4 - iter 365/738 - loss 0.36058865 - time (sec): 8.77 - samples/sec: 9569.18 - lr: 0.000022 - momentum: 0.000000
2023-10-18 18:54:13,564 epoch 4 - iter 438/738 - loss 0.36988378 - time (sec): 10.59 - samples/sec: 9494.32 - lr: 0.000021 - momentum: 0.000000
2023-10-18 18:54:15,301 epoch 4 - iter 511/738 - loss 0.36884095 - time (sec): 12.32 - samples/sec: 9483.53 - lr: 0.000021 - momentum: 0.000000
2023-10-18 18:54:16,957 epoch 4 - iter 584/738 - loss 0.36969941 - time (sec): 13.98 - samples/sec: 9494.13 - lr: 0.000021 - momentum: 0.000000
2023-10-18 18:54:18,684 epoch 4 - iter 657/738 - loss 0.36761614 - time (sec): 15.71 - samples/sec: 9486.58 - lr: 0.000020 - momentum: 0.000000
2023-10-18 18:54:20,383 epoch 4 - iter 730/738 - loss 0.36714089 - time (sec): 17.40 - samples/sec: 9473.64 - lr: 0.000020 - momentum: 0.000000
2023-10-18 18:54:20,563 ----------------------------------------------------------------------------------------------------
2023-10-18 18:54:20,563 EPOCH 4 done: loss 0.3663 - lr: 0.000020
2023-10-18 18:54:27,702 DEV : loss 0.2950303554534912 - f1-score (micro avg)  0.3587
2023-10-18 18:54:27,728 saving best model
2023-10-18 18:54:27,766 ----------------------------------------------------------------------------------------------------
2023-10-18 18:54:29,457 epoch 5 - iter 73/738 - loss 0.34146707 - time (sec): 1.69 - samples/sec: 9529.99 - lr: 0.000020 - momentum: 0.000000
2023-10-18 18:54:31,179 epoch 5 - iter 146/738 - loss 0.34642612 - time (sec): 3.41 - samples/sec: 9364.92 - lr: 0.000019 - momentum: 0.000000
2023-10-18 18:54:32,907 epoch 5 - iter 219/738 - loss 0.34668670 - time (sec): 5.14 - samples/sec: 9395.92 - lr: 0.000019 - momentum: 0.000000
2023-10-18 18:54:35,219 epoch 5 - iter 292/738 - loss 0.34194245 - time (sec): 7.45 - samples/sec: 9100.75 - lr: 0.000019 - momentum: 0.000000
2023-10-18 18:54:37,017 epoch 5 - iter 365/738 - loss 0.34187389 - time (sec): 9.25 - samples/sec: 9123.73 - lr: 0.000018 - momentum: 0.000000
2023-10-18 18:54:38,755 epoch 5 - iter 438/738 - loss 0.34124463 - time (sec): 10.99 - samples/sec: 9147.79 - lr: 0.000018 - momentum: 0.000000
2023-10-18 18:54:40,488 epoch 5 - iter 511/738 - loss 0.34019308 - time (sec): 12.72 - samples/sec: 8986.48 - lr: 0.000018 - momentum: 0.000000
2023-10-18 18:54:42,281 epoch 5 - iter 584/738 - loss 0.34038501 - time (sec): 14.51 - samples/sec: 8887.32 - lr: 0.000017 - momentum: 0.000000
2023-10-18 18:54:44,097 epoch 5 - iter 657/738 - loss 0.33829006 - time (sec): 16.33 - samples/sec: 8947.38 - lr: 0.000017 - momentum: 0.000000
2023-10-18 18:54:45,929 epoch 5 - iter 730/738 - loss 0.33961410 - time (sec): 18.16 - samples/sec: 9066.69 - lr: 0.000017 - momentum: 0.000000
2023-10-18 18:54:46,122 ----------------------------------------------------------------------------------------------------
2023-10-18 18:54:46,122 EPOCH 5 done: loss 0.3400 - lr: 0.000017
2023-10-18 18:54:53,313 DEV : loss 0.2756083011627197 - f1-score (micro avg)  0.3862
2023-10-18 18:54:53,339 saving best model
2023-10-18 18:54:53,378 ----------------------------------------------------------------------------------------------------
2023-10-18 18:54:55,141 epoch 6 - iter 73/738 - loss 0.34120287 - time (sec): 1.76 - samples/sec: 10190.28 - lr: 0.000016 - momentum: 0.000000
2023-10-18 18:54:56,920 epoch 6 - iter 146/738 - loss 0.32162573 - time (sec): 3.54 - samples/sec: 9838.24 - lr: 0.000016 - momentum: 0.000000
2023-10-18 18:54:58,625 epoch 6 - iter 219/738 - loss 0.31874927 - time (sec): 5.25 - samples/sec: 9710.50 - lr: 0.000016 - momentum: 0.000000
2023-10-18 18:55:00,318 epoch 6 - iter 292/738 - loss 0.32065056 - time (sec): 6.94 - samples/sec: 9693.25 - lr: 0.000015 - momentum: 0.000000
2023-10-18 18:55:02,163 epoch 6 - iter 365/738 - loss 0.31480678 - time (sec): 8.78 - samples/sec: 9569.85 - lr: 0.000015 - momentum: 0.000000
2023-10-18 18:55:03,941 epoch 6 - iter 438/738 - loss 0.32409156 - time (sec): 10.56 - samples/sec: 9331.67 - lr: 0.000015 - momentum: 0.000000
2023-10-18 18:55:05,700 epoch 6 - iter 511/738 - loss 0.32737315 - time (sec): 12.32 - samples/sec: 9351.69 - lr: 0.000014 - momentum: 0.000000
2023-10-18 18:55:07,401 epoch 6 - iter 584/738 - loss 0.32330551 - time (sec): 14.02 - samples/sec: 9309.21 - lr: 0.000014 - momentum: 0.000000
2023-10-18 18:55:09,120 epoch 6 - iter 657/738 - loss 0.32258843 - time (sec): 15.74 - samples/sec: 9300.41 - lr: 0.000014 - momentum: 0.000000
2023-10-18 18:55:10,901 epoch 6 - iter 730/738 - loss 0.32208614 - time (sec): 17.52 - samples/sec: 9395.06 - lr: 0.000013 - momentum: 0.000000
2023-10-18 18:55:11,098 ----------------------------------------------------------------------------------------------------
2023-10-18 18:55:11,098 EPOCH 6 done: loss 0.3219 - lr: 0.000013
2023-10-18 18:55:18,261 DEV : loss 0.26639610528945923 - f1-score (micro avg)  0.4146
2023-10-18 18:55:18,288 saving best model
2023-10-18 18:55:18,322 ----------------------------------------------------------------------------------------------------
2023-10-18 18:55:20,066 epoch 7 - iter 73/738 - loss 0.30556597 - time (sec): 1.74 - samples/sec: 9564.01 - lr: 0.000013 - momentum: 0.000000
2023-10-18 18:55:21,775 epoch 7 - iter 146/738 - loss 0.31726978 - time (sec): 3.45 - samples/sec: 9546.50 - lr: 0.000013 - momentum: 0.000000
2023-10-18 18:55:23,473 epoch 7 - iter 219/738 - loss 0.30091048 - time (sec): 5.15 - samples/sec: 9444.26 - lr: 0.000012 - momentum: 0.000000
2023-10-18 18:55:25,177 epoch 7 - iter 292/738 - loss 0.30981691 - time (sec): 6.85 - samples/sec: 9502.79 - lr: 0.000012 - momentum: 0.000000
2023-10-18 18:55:26,970 epoch 7 - iter 365/738 - loss 0.30604870 - time (sec): 8.65 - samples/sec: 9520.74 - lr: 0.000012 - momentum: 0.000000
2023-10-18 18:55:28,704 epoch 7 - iter 438/738 - loss 0.30386617 - time (sec): 10.38 - samples/sec: 9526.86 - lr: 0.000011 - momentum: 0.000000
2023-10-18 18:55:30,392 epoch 7 - iter 511/738 - loss 0.30690882 - time (sec): 12.07 - samples/sec: 9522.71 - lr: 0.000011 - momentum: 0.000000
2023-10-18 18:55:32,166 epoch 7 - iter 584/738 - loss 0.30363679 - time (sec): 13.84 - samples/sec: 9488.93 - lr: 0.000011 - momentum: 0.000000
2023-10-18 18:55:33,875 epoch 7 - iter 657/738 - loss 0.30303827 - time (sec): 15.55 - samples/sec: 9521.30 - lr: 0.000010 - momentum: 0.000000
2023-10-18 18:55:35,616 epoch 7 - iter 730/738 - loss 0.30566278 - time (sec): 17.29 - samples/sec: 9534.15 - lr: 0.000010 - momentum: 0.000000
2023-10-18 18:55:35,806 ----------------------------------------------------------------------------------------------------
2023-10-18 18:55:35,806 EPOCH 7 done: loss 0.3074 - lr: 0.000010
2023-10-18 18:55:42,992 DEV : loss 0.2636333405971527 - f1-score (micro avg)  0.4126
2023-10-18 18:55:43,019 ----------------------------------------------------------------------------------------------------
2023-10-18 18:55:44,858 epoch 8 - iter 73/738 - loss 0.30261683 - time (sec): 1.84 - samples/sec: 11006.58 - lr: 0.000010 - momentum: 0.000000
2023-10-18 18:55:46,596 epoch 8 - iter 146/738 - loss 0.30342876 - time (sec): 3.58 - samples/sec: 10365.01 - lr: 0.000009 - momentum: 0.000000
2023-10-18 18:55:48,328 epoch 8 - iter 219/738 - loss 0.29957239 - time (sec): 5.31 - samples/sec: 9959.68 - lr: 0.000009 - momentum: 0.000000
2023-10-18 18:55:50,041 epoch 8 - iter 292/738 - loss 0.30420435 - time (sec): 7.02 - samples/sec: 9882.01 - lr: 0.000009 - momentum: 0.000000
2023-10-18 18:55:51,706 epoch 8 - iter 365/738 - loss 0.29943806 - time (sec): 8.69 - samples/sec: 9704.42 - lr: 0.000008 - momentum: 0.000000
2023-10-18 18:55:53,371 epoch 8 - iter 438/738 - loss 0.30018714 - time (sec): 10.35 - samples/sec: 9670.71 - lr: 0.000008 - momentum: 0.000000
2023-10-18 18:55:55,084 epoch 8 - iter 511/738 - loss 0.29946570 - time (sec): 12.06 - samples/sec: 9639.16 - lr: 0.000008 - momentum: 0.000000
2023-10-18 18:55:56,861 epoch 8 - iter 584/738 - loss 0.29967547 - time (sec): 13.84 - samples/sec: 9609.30 - lr: 0.000007 - momentum: 0.000000
2023-10-18 18:55:58,534 epoch 8 - iter 657/738 - loss 0.30042341 - time (sec): 15.51 - samples/sec: 9584.72 - lr: 0.000007 - momentum: 0.000000
2023-10-18 18:56:00,204 epoch 8 - iter 730/738 - loss 0.29829974 - time (sec): 17.18 - samples/sec: 9567.93 - lr: 0.000007 - momentum: 0.000000
2023-10-18 18:56:00,391 ----------------------------------------------------------------------------------------------------
2023-10-18 18:56:00,391 EPOCH 8 done: loss 0.2999 - lr: 0.000007
2023-10-18 18:56:07,599 DEV : loss 0.2585228383541107 - f1-score (micro avg)  0.4277
2023-10-18 18:56:07,625 saving best model
2023-10-18 18:56:07,658 ----------------------------------------------------------------------------------------------------
2023-10-18 18:56:09,344 epoch 9 - iter 73/738 - loss 0.30758024 - time (sec): 1.69 - samples/sec: 9099.32 - lr: 0.000006 - momentum: 0.000000
2023-10-18 18:56:11,067 epoch 9 - iter 146/738 - loss 0.28960177 - time (sec): 3.41 - samples/sec: 9174.55 - lr: 0.000006 - momentum: 0.000000
2023-10-18 18:56:12,916 epoch 9 - iter 219/738 - loss 0.30272308 - time (sec): 5.26 - samples/sec: 9519.35 - lr: 0.000006 - momentum: 0.000000
2023-10-18 18:56:15,107 epoch 9 - iter 292/738 - loss 0.30045146 - time (sec): 7.45 - samples/sec: 8945.26 - lr: 0.000005 - momentum: 0.000000
2023-10-18 18:56:16,846 epoch 9 - iter 365/738 - loss 0.30003631 - time (sec): 9.19 - samples/sec: 8958.35 - lr: 0.000005 - momentum: 0.000000
2023-10-18 18:56:18,557 epoch 9 - iter 438/738 - loss 0.30160690 - time (sec): 10.90 - samples/sec: 8970.13 - lr: 0.000005 - momentum: 0.000000
2023-10-18 18:56:20,297 epoch 9 - iter 511/738 - loss 0.29885683 - time (sec): 12.64 - samples/sec: 9090.97 - lr: 0.000004 - momentum: 0.000000
2023-10-18 18:56:22,022 epoch 9 - iter 584/738 - loss 0.29861281 - time (sec): 14.36 - samples/sec: 9134.26 - lr: 0.000004 - momentum: 0.000000
2023-10-18 18:56:23,671 epoch 9 - iter 657/738 - loss 0.29753874 - time (sec): 16.01 - samples/sec: 9118.57 - lr: 0.000004 - momentum: 0.000000
2023-10-18 18:56:25,423 epoch 9 - iter 730/738 - loss 0.29722536 - time (sec): 17.76 - samples/sec: 9159.83 - lr: 0.000003 - momentum: 0.000000
2023-10-18 18:56:25,709 ----------------------------------------------------------------------------------------------------
2023-10-18 18:56:25,709 EPOCH 9 done: loss 0.2950 - lr: 0.000003
2023-10-18 18:56:32,950 DEV : loss 0.2576240301132202 - f1-score (micro avg)  0.431
2023-10-18 18:56:32,976 saving best model
2023-10-18 18:56:33,008 ----------------------------------------------------------------------------------------------------
2023-10-18 18:56:34,836 epoch 10 - iter 73/738 - loss 0.25004751 - time (sec): 1.83 - samples/sec: 9649.60 - lr: 0.000003 - momentum: 0.000000
2023-10-18 18:56:36,574 epoch 10 - iter 146/738 - loss 0.26018308 - time (sec): 3.57 - samples/sec: 9518.95 - lr: 0.000003 - momentum: 0.000000
2023-10-18 18:56:38,376 epoch 10 - iter 219/738 - loss 0.27025184 - time (sec): 5.37 - samples/sec: 9358.69 - lr: 0.000002 - momentum: 0.000000
2023-10-18 18:56:40,175 epoch 10 - iter 292/738 - loss 0.27857312 - time (sec): 7.17 - samples/sec: 9197.61 - lr: 0.000002 - momentum: 0.000000
2023-10-18 18:56:41,871 epoch 10 - iter 365/738 - loss 0.28303110 - time (sec): 8.86 - samples/sec: 9296.23 - lr: 0.000002 - momentum: 0.000000
2023-10-18 18:56:43,610 epoch 10 - iter 438/738 - loss 0.28434751 - time (sec): 10.60 - samples/sec: 9421.95 - lr: 0.000001 - momentum: 0.000000
2023-10-18 18:56:45,319 epoch 10 - iter 511/738 - loss 0.28539794 - time (sec): 12.31 - samples/sec: 9386.12 - lr: 0.000001 - momentum: 0.000000
2023-10-18 18:56:47,129 epoch 10 - iter 584/738 - loss 0.28911825 - time (sec): 14.12 - samples/sec: 9443.73 - lr: 0.000001 - momentum: 0.000000
2023-10-18 18:56:48,852 epoch 10 - iter 657/738 - loss 0.28832023 - time (sec): 15.84 - samples/sec: 9435.15 - lr: 0.000000 - momentum: 0.000000
2023-10-18 18:56:50,534 epoch 10 - iter 730/738 - loss 0.28826766 - time (sec): 17.52 - samples/sec: 9417.66 - lr: 0.000000 - momentum: 0.000000
2023-10-18 18:56:50,717 ----------------------------------------------------------------------------------------------------
2023-10-18 18:56:50,718 EPOCH 10 done: loss 0.2885 - lr: 0.000000
2023-10-18 18:56:57,957 DEV : loss 0.2570817172527313 - f1-score (micro avg)  0.4335
2023-10-18 18:56:57,984 saving best model
2023-10-18 18:56:58,046 ----------------------------------------------------------------------------------------------------
2023-10-18 18:56:58,046 Loading model from best epoch ...
2023-10-18 18:56:58,126 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
2023-10-18 18:57:00,796 
Results:
- F-score (micro) 0.4619
- F-score (macro) 0.2331
- Accuracy 0.3203

By class:
              precision    recall  f1-score   support

         loc     0.4967    0.6935    0.5788       858
        pers     0.3154    0.4246    0.3619       537
         org     0.1429    0.0076    0.0144       132
        time     0.2439    0.1852    0.2105        54
        prod     0.0000    0.0000    0.0000        61

   micro avg     0.4236    0.5079    0.4619      1642
   macro avg     0.2398    0.2622    0.2331      1642
weighted avg     0.3822    0.5079    0.4289      1642

2023-10-18 18:57:00,796 ----------------------------------------------------------------------------------------------------