File size: 24,159 Bytes
a01099d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
2023-10-13 13:52:18,187 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:18,188 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=21, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 13:52:18,188 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:18,188 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
 - NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
2023-10-13 13:52:18,188 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:18,188 Train:  3575 sentences
2023-10-13 13:52:18,188         (train_with_dev=False, train_with_test=False)
2023-10-13 13:52:18,188 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:18,188 Training Params:
2023-10-13 13:52:18,188  - learning_rate: "5e-05" 
2023-10-13 13:52:18,188  - mini_batch_size: "8"
2023-10-13 13:52:18,188  - max_epochs: "10"
2023-10-13 13:52:18,188  - shuffle: "True"
2023-10-13 13:52:18,188 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:18,188 Plugins:
2023-10-13 13:52:18,188  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 13:52:18,188 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:18,188 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 13:52:18,188  - metric: "('micro avg', 'f1-score')"
2023-10-13 13:52:18,188 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:18,188 Computation:
2023-10-13 13:52:18,189  - compute on device: cuda:0
2023-10-13 13:52:18,189  - embedding storage: none
2023-10-13 13:52:18,189 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:18,189 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-13 13:52:18,189 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:18,189 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:21,622 epoch 1 - iter 44/447 - loss 2.80304392 - time (sec): 3.43 - samples/sec: 2855.55 - lr: 0.000005 - momentum: 0.000000
2023-10-13 13:52:24,408 epoch 1 - iter 88/447 - loss 1.89690895 - time (sec): 6.22 - samples/sec: 3020.50 - lr: 0.000010 - momentum: 0.000000
2023-10-13 13:52:27,111 epoch 1 - iter 132/447 - loss 1.47044904 - time (sec): 8.92 - samples/sec: 3039.37 - lr: 0.000015 - momentum: 0.000000
2023-10-13 13:52:30,098 epoch 1 - iter 176/447 - loss 1.20785199 - time (sec): 11.91 - samples/sec: 3003.46 - lr: 0.000020 - momentum: 0.000000
2023-10-13 13:52:32,766 epoch 1 - iter 220/447 - loss 1.03327036 - time (sec): 14.58 - samples/sec: 3040.46 - lr: 0.000024 - momentum: 0.000000
2023-10-13 13:52:35,528 epoch 1 - iter 264/447 - loss 0.91266769 - time (sec): 17.34 - samples/sec: 3041.19 - lr: 0.000029 - momentum: 0.000000
2023-10-13 13:52:38,240 epoch 1 - iter 308/447 - loss 0.82567581 - time (sec): 20.05 - samples/sec: 3043.77 - lr: 0.000034 - momentum: 0.000000
2023-10-13 13:52:40,937 epoch 1 - iter 352/447 - loss 0.75655968 - time (sec): 22.75 - samples/sec: 3047.57 - lr: 0.000039 - momentum: 0.000000
2023-10-13 13:52:43,500 epoch 1 - iter 396/447 - loss 0.70566723 - time (sec): 25.31 - samples/sec: 3048.34 - lr: 0.000044 - momentum: 0.000000
2023-10-13 13:52:46,292 epoch 1 - iter 440/447 - loss 0.65893566 - time (sec): 28.10 - samples/sec: 3042.80 - lr: 0.000049 - momentum: 0.000000
2023-10-13 13:52:46,683 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:46,683 EPOCH 1 done: loss 0.6536 - lr: 0.000049
2023-10-13 13:52:51,632 DEV : loss 0.1805853396654129 - f1-score (micro avg)  0.5981
2023-10-13 13:52:51,663 saving best model
2023-10-13 13:52:51,967 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:54,970 epoch 2 - iter 44/447 - loss 0.21737154 - time (sec): 3.00 - samples/sec: 3049.14 - lr: 0.000049 - momentum: 0.000000
2023-10-13 13:52:57,708 epoch 2 - iter 88/447 - loss 0.19897717 - time (sec): 5.74 - samples/sec: 3056.43 - lr: 0.000049 - momentum: 0.000000
2023-10-13 13:53:00,436 epoch 2 - iter 132/447 - loss 0.18115887 - time (sec): 8.47 - samples/sec: 3036.94 - lr: 0.000048 - momentum: 0.000000
2023-10-13 13:53:03,011 epoch 2 - iter 176/447 - loss 0.17788084 - time (sec): 11.04 - samples/sec: 3009.71 - lr: 0.000048 - momentum: 0.000000
2023-10-13 13:53:05,790 epoch 2 - iter 220/447 - loss 0.17534041 - time (sec): 13.82 - samples/sec: 2995.56 - lr: 0.000047 - momentum: 0.000000
2023-10-13 13:53:08,645 epoch 2 - iter 264/447 - loss 0.17589414 - time (sec): 16.68 - samples/sec: 3002.72 - lr: 0.000047 - momentum: 0.000000
2023-10-13 13:53:11,430 epoch 2 - iter 308/447 - loss 0.17338298 - time (sec): 19.46 - samples/sec: 3022.60 - lr: 0.000046 - momentum: 0.000000
2023-10-13 13:53:14,245 epoch 2 - iter 352/447 - loss 0.16761658 - time (sec): 22.28 - samples/sec: 3022.69 - lr: 0.000046 - momentum: 0.000000
2023-10-13 13:53:17,241 epoch 2 - iter 396/447 - loss 0.16105209 - time (sec): 25.27 - samples/sec: 3022.47 - lr: 0.000045 - momentum: 0.000000
2023-10-13 13:53:20,143 epoch 2 - iter 440/447 - loss 0.15642468 - time (sec): 28.17 - samples/sec: 3017.36 - lr: 0.000045 - momentum: 0.000000
2023-10-13 13:53:20,611 ----------------------------------------------------------------------------------------------------
2023-10-13 13:53:20,611 EPOCH 2 done: loss 0.1550 - lr: 0.000045
2023-10-13 13:53:29,109 DEV : loss 0.15057964622974396 - f1-score (micro avg)  0.7063
2023-10-13 13:53:29,142 saving best model
2023-10-13 13:53:29,537 ----------------------------------------------------------------------------------------------------
2023-10-13 13:53:32,262 epoch 3 - iter 44/447 - loss 0.07579220 - time (sec): 2.72 - samples/sec: 3332.73 - lr: 0.000044 - momentum: 0.000000
2023-10-13 13:53:34,966 epoch 3 - iter 88/447 - loss 0.07941142 - time (sec): 5.43 - samples/sec: 3273.81 - lr: 0.000043 - momentum: 0.000000
2023-10-13 13:53:38,158 epoch 3 - iter 132/447 - loss 0.08409869 - time (sec): 8.62 - samples/sec: 3137.62 - lr: 0.000043 - momentum: 0.000000
2023-10-13 13:53:41,107 epoch 3 - iter 176/447 - loss 0.08454449 - time (sec): 11.57 - samples/sec: 3110.22 - lr: 0.000042 - momentum: 0.000000
2023-10-13 13:53:43,996 epoch 3 - iter 220/447 - loss 0.08496677 - time (sec): 14.46 - samples/sec: 3039.05 - lr: 0.000042 - momentum: 0.000000
2023-10-13 13:53:46,740 epoch 3 - iter 264/447 - loss 0.08464658 - time (sec): 17.20 - samples/sec: 3043.20 - lr: 0.000041 - momentum: 0.000000
2023-10-13 13:53:49,549 epoch 3 - iter 308/447 - loss 0.08359817 - time (sec): 20.01 - samples/sec: 3002.88 - lr: 0.000041 - momentum: 0.000000
2023-10-13 13:53:52,567 epoch 3 - iter 352/447 - loss 0.08430508 - time (sec): 23.03 - samples/sec: 2967.62 - lr: 0.000040 - momentum: 0.000000
2023-10-13 13:53:55,292 epoch 3 - iter 396/447 - loss 0.08382783 - time (sec): 25.75 - samples/sec: 2995.30 - lr: 0.000040 - momentum: 0.000000
2023-10-13 13:53:57,974 epoch 3 - iter 440/447 - loss 0.08420380 - time (sec): 28.43 - samples/sec: 2998.20 - lr: 0.000039 - momentum: 0.000000
2023-10-13 13:53:58,449 ----------------------------------------------------------------------------------------------------
2023-10-13 13:53:58,450 EPOCH 3 done: loss 0.0847 - lr: 0.000039
2023-10-13 13:54:07,082 DEV : loss 0.1508309543132782 - f1-score (micro avg)  0.7244
2023-10-13 13:54:07,114 saving best model
2023-10-13 13:54:07,523 ----------------------------------------------------------------------------------------------------
2023-10-13 13:54:10,479 epoch 4 - iter 44/447 - loss 0.05304508 - time (sec): 2.95 - samples/sec: 3103.87 - lr: 0.000038 - momentum: 0.000000
2023-10-13 13:54:13,204 epoch 4 - iter 88/447 - loss 0.05490691 - time (sec): 5.68 - samples/sec: 3049.47 - lr: 0.000038 - momentum: 0.000000
2023-10-13 13:54:16,460 epoch 4 - iter 132/447 - loss 0.05603952 - time (sec): 8.93 - samples/sec: 3062.78 - lr: 0.000037 - momentum: 0.000000
2023-10-13 13:54:19,244 epoch 4 - iter 176/447 - loss 0.05430011 - time (sec): 11.72 - samples/sec: 3015.42 - lr: 0.000037 - momentum: 0.000000
2023-10-13 13:54:22,000 epoch 4 - iter 220/447 - loss 0.05473667 - time (sec): 14.47 - samples/sec: 3016.35 - lr: 0.000036 - momentum: 0.000000
2023-10-13 13:54:25,103 epoch 4 - iter 264/447 - loss 0.05343876 - time (sec): 17.58 - samples/sec: 3017.62 - lr: 0.000036 - momentum: 0.000000
2023-10-13 13:54:27,815 epoch 4 - iter 308/447 - loss 0.05373041 - time (sec): 20.29 - samples/sec: 3016.27 - lr: 0.000035 - momentum: 0.000000
2023-10-13 13:54:30,485 epoch 4 - iter 352/447 - loss 0.05298263 - time (sec): 22.96 - samples/sec: 3009.46 - lr: 0.000035 - momentum: 0.000000
2023-10-13 13:54:33,206 epoch 4 - iter 396/447 - loss 0.05489649 - time (sec): 25.68 - samples/sec: 2998.60 - lr: 0.000034 - momentum: 0.000000
2023-10-13 13:54:36,028 epoch 4 - iter 440/447 - loss 0.05438705 - time (sec): 28.50 - samples/sec: 2992.42 - lr: 0.000033 - momentum: 0.000000
2023-10-13 13:54:36,485 ----------------------------------------------------------------------------------------------------
2023-10-13 13:54:36,485 EPOCH 4 done: loss 0.0544 - lr: 0.000033
2023-10-13 13:54:45,181 DEV : loss 0.1490735560655594 - f1-score (micro avg)  0.7535
2023-10-13 13:54:45,214 saving best model
2023-10-13 13:54:45,613 ----------------------------------------------------------------------------------------------------
2023-10-13 13:54:48,582 epoch 5 - iter 44/447 - loss 0.03436720 - time (sec): 2.97 - samples/sec: 2904.86 - lr: 0.000033 - momentum: 0.000000
2023-10-13 13:54:51,323 epoch 5 - iter 88/447 - loss 0.03358143 - time (sec): 5.71 - samples/sec: 2951.13 - lr: 0.000032 - momentum: 0.000000
2023-10-13 13:54:53,986 epoch 5 - iter 132/447 - loss 0.03188978 - time (sec): 8.37 - samples/sec: 2969.83 - lr: 0.000032 - momentum: 0.000000
2023-10-13 13:54:56,951 epoch 5 - iter 176/447 - loss 0.03397266 - time (sec): 11.34 - samples/sec: 3032.31 - lr: 0.000031 - momentum: 0.000000
2023-10-13 13:54:59,853 epoch 5 - iter 220/447 - loss 0.03755977 - time (sec): 14.24 - samples/sec: 3047.91 - lr: 0.000031 - momentum: 0.000000
2023-10-13 13:55:02,845 epoch 5 - iter 264/447 - loss 0.03734981 - time (sec): 17.23 - samples/sec: 3036.76 - lr: 0.000030 - momentum: 0.000000
2023-10-13 13:55:05,483 epoch 5 - iter 308/447 - loss 0.03737218 - time (sec): 19.87 - samples/sec: 3041.74 - lr: 0.000030 - momentum: 0.000000
2023-10-13 13:55:08,295 epoch 5 - iter 352/447 - loss 0.03758080 - time (sec): 22.68 - samples/sec: 3046.49 - lr: 0.000029 - momentum: 0.000000
2023-10-13 13:55:10,968 epoch 5 - iter 396/447 - loss 0.03764803 - time (sec): 25.35 - samples/sec: 3037.80 - lr: 0.000028 - momentum: 0.000000
2023-10-13 13:55:13,794 epoch 5 - iter 440/447 - loss 0.03690605 - time (sec): 28.18 - samples/sec: 3024.48 - lr: 0.000028 - momentum: 0.000000
2023-10-13 13:55:14,221 ----------------------------------------------------------------------------------------------------
2023-10-13 13:55:14,221 EPOCH 5 done: loss 0.0367 - lr: 0.000028
2023-10-13 13:55:22,677 DEV : loss 0.1890304833650589 - f1-score (micro avg)  0.7566
2023-10-13 13:55:22,709 saving best model
2023-10-13 13:55:23,122 ----------------------------------------------------------------------------------------------------
2023-10-13 13:55:25,741 epoch 6 - iter 44/447 - loss 0.01994334 - time (sec): 2.62 - samples/sec: 3158.60 - lr: 0.000027 - momentum: 0.000000
2023-10-13 13:55:28,554 epoch 6 - iter 88/447 - loss 0.02422846 - time (sec): 5.43 - samples/sec: 3070.83 - lr: 0.000027 - momentum: 0.000000
2023-10-13 13:55:31,909 epoch 6 - iter 132/447 - loss 0.02376942 - time (sec): 8.79 - samples/sec: 3058.05 - lr: 0.000026 - momentum: 0.000000
2023-10-13 13:55:34,772 epoch 6 - iter 176/447 - loss 0.02490342 - time (sec): 11.65 - samples/sec: 3048.64 - lr: 0.000026 - momentum: 0.000000
2023-10-13 13:55:37,643 epoch 6 - iter 220/447 - loss 0.02396279 - time (sec): 14.52 - samples/sec: 3083.56 - lr: 0.000025 - momentum: 0.000000
2023-10-13 13:55:40,417 epoch 6 - iter 264/447 - loss 0.02424836 - time (sec): 17.29 - samples/sec: 3065.45 - lr: 0.000025 - momentum: 0.000000
2023-10-13 13:55:43,124 epoch 6 - iter 308/447 - loss 0.02495930 - time (sec): 20.00 - samples/sec: 3046.22 - lr: 0.000024 - momentum: 0.000000
2023-10-13 13:55:45,698 epoch 6 - iter 352/447 - loss 0.02502682 - time (sec): 22.57 - samples/sec: 3065.48 - lr: 0.000023 - momentum: 0.000000
2023-10-13 13:55:48,469 epoch 6 - iter 396/447 - loss 0.02486617 - time (sec): 25.35 - samples/sec: 3063.90 - lr: 0.000023 - momentum: 0.000000
2023-10-13 13:55:51,039 epoch 6 - iter 440/447 - loss 0.02471361 - time (sec): 27.92 - samples/sec: 3051.50 - lr: 0.000022 - momentum: 0.000000
2023-10-13 13:55:51,467 ----------------------------------------------------------------------------------------------------
2023-10-13 13:55:51,467 EPOCH 6 done: loss 0.0245 - lr: 0.000022
2023-10-13 13:56:00,211 DEV : loss 0.20025420188903809 - f1-score (micro avg)  0.7608
2023-10-13 13:56:00,243 saving best model
2023-10-13 13:56:00,662 ----------------------------------------------------------------------------------------------------
2023-10-13 13:56:03,244 epoch 7 - iter 44/447 - loss 0.03159210 - time (sec): 2.58 - samples/sec: 2982.07 - lr: 0.000022 - momentum: 0.000000
2023-10-13 13:56:05,871 epoch 7 - iter 88/447 - loss 0.02117470 - time (sec): 5.21 - samples/sec: 2970.34 - lr: 0.000021 - momentum: 0.000000
2023-10-13 13:56:09,050 epoch 7 - iter 132/447 - loss 0.01682505 - time (sec): 8.39 - samples/sec: 2985.75 - lr: 0.000021 - momentum: 0.000000
2023-10-13 13:56:11,821 epoch 7 - iter 176/447 - loss 0.01583735 - time (sec): 11.16 - samples/sec: 3021.13 - lr: 0.000020 - momentum: 0.000000
2023-10-13 13:56:14,739 epoch 7 - iter 220/447 - loss 0.01568590 - time (sec): 14.07 - samples/sec: 3019.51 - lr: 0.000020 - momentum: 0.000000
2023-10-13 13:56:17,684 epoch 7 - iter 264/447 - loss 0.01455990 - time (sec): 17.02 - samples/sec: 2983.40 - lr: 0.000019 - momentum: 0.000000
2023-10-13 13:56:20,385 epoch 7 - iter 308/447 - loss 0.01564589 - time (sec): 19.72 - samples/sec: 2994.82 - lr: 0.000018 - momentum: 0.000000
2023-10-13 13:56:23,491 epoch 7 - iter 352/447 - loss 0.01560294 - time (sec): 22.83 - samples/sec: 2982.24 - lr: 0.000018 - momentum: 0.000000
2023-10-13 13:56:26,186 epoch 7 - iter 396/447 - loss 0.01510732 - time (sec): 25.52 - samples/sec: 2999.36 - lr: 0.000017 - momentum: 0.000000
2023-10-13 13:56:28,972 epoch 7 - iter 440/447 - loss 0.01441825 - time (sec): 28.31 - samples/sec: 3009.18 - lr: 0.000017 - momentum: 0.000000
2023-10-13 13:56:29,419 ----------------------------------------------------------------------------------------------------
2023-10-13 13:56:29,419 EPOCH 7 done: loss 0.0143 - lr: 0.000017
2023-10-13 13:56:38,590 DEV : loss 0.22453096508979797 - f1-score (micro avg)  0.7614
2023-10-13 13:56:38,637 saving best model
2023-10-13 13:56:39,102 ----------------------------------------------------------------------------------------------------
2023-10-13 13:56:42,027 epoch 8 - iter 44/447 - loss 0.02136768 - time (sec): 2.92 - samples/sec: 2850.76 - lr: 0.000016 - momentum: 0.000000
2023-10-13 13:56:44,869 epoch 8 - iter 88/447 - loss 0.01238681 - time (sec): 5.76 - samples/sec: 2874.37 - lr: 0.000016 - momentum: 0.000000
2023-10-13 13:56:47,878 epoch 8 - iter 132/447 - loss 0.01270474 - time (sec): 8.77 - samples/sec: 2944.00 - lr: 0.000015 - momentum: 0.000000
2023-10-13 13:56:50,949 epoch 8 - iter 176/447 - loss 0.01180657 - time (sec): 11.84 - samples/sec: 2964.03 - lr: 0.000015 - momentum: 0.000000
2023-10-13 13:56:53,931 epoch 8 - iter 220/447 - loss 0.01182640 - time (sec): 14.83 - samples/sec: 2944.03 - lr: 0.000014 - momentum: 0.000000
2023-10-13 13:56:56,513 epoch 8 - iter 264/447 - loss 0.01218369 - time (sec): 17.41 - samples/sec: 2972.81 - lr: 0.000013 - momentum: 0.000000
2023-10-13 13:56:59,336 epoch 8 - iter 308/447 - loss 0.01137181 - time (sec): 20.23 - samples/sec: 2969.57 - lr: 0.000013 - momentum: 0.000000
2023-10-13 13:57:02,018 epoch 8 - iter 352/447 - loss 0.01080205 - time (sec): 22.91 - samples/sec: 2986.53 - lr: 0.000012 - momentum: 0.000000
2023-10-13 13:57:04,779 epoch 8 - iter 396/447 - loss 0.00997545 - time (sec): 25.68 - samples/sec: 2988.77 - lr: 0.000012 - momentum: 0.000000
2023-10-13 13:57:07,732 epoch 8 - iter 440/447 - loss 0.00947122 - time (sec): 28.63 - samples/sec: 2981.97 - lr: 0.000011 - momentum: 0.000000
2023-10-13 13:57:08,116 ----------------------------------------------------------------------------------------------------
2023-10-13 13:57:08,116 EPOCH 8 done: loss 0.0094 - lr: 0.000011
2023-10-13 13:57:16,674 DEV : loss 0.23534463346004486 - f1-score (micro avg)  0.783
2023-10-13 13:57:16,705 saving best model
2023-10-13 13:57:17,051 ----------------------------------------------------------------------------------------------------
2023-10-13 13:57:19,655 epoch 9 - iter 44/447 - loss 0.00423546 - time (sec): 2.60 - samples/sec: 3143.55 - lr: 0.000011 - momentum: 0.000000
2023-10-13 13:57:22,730 epoch 9 - iter 88/447 - loss 0.00445111 - time (sec): 5.68 - samples/sec: 3081.95 - lr: 0.000010 - momentum: 0.000000
2023-10-13 13:57:25,724 epoch 9 - iter 132/447 - loss 0.00390275 - time (sec): 8.67 - samples/sec: 3066.27 - lr: 0.000010 - momentum: 0.000000
2023-10-13 13:57:28,490 epoch 9 - iter 176/447 - loss 0.00514473 - time (sec): 11.44 - samples/sec: 3064.22 - lr: 0.000009 - momentum: 0.000000
2023-10-13 13:57:31,331 epoch 9 - iter 220/447 - loss 0.00557898 - time (sec): 14.28 - samples/sec: 3024.88 - lr: 0.000008 - momentum: 0.000000
2023-10-13 13:57:34,094 epoch 9 - iter 264/447 - loss 0.00642635 - time (sec): 17.04 - samples/sec: 3018.71 - lr: 0.000008 - momentum: 0.000000
2023-10-13 13:57:36,796 epoch 9 - iter 308/447 - loss 0.00721538 - time (sec): 19.74 - samples/sec: 3036.37 - lr: 0.000007 - momentum: 0.000000
2023-10-13 13:57:39,544 epoch 9 - iter 352/447 - loss 0.00668215 - time (sec): 22.49 - samples/sec: 3049.79 - lr: 0.000007 - momentum: 0.000000
2023-10-13 13:57:42,501 epoch 9 - iter 396/447 - loss 0.00679635 - time (sec): 25.45 - samples/sec: 3024.59 - lr: 0.000006 - momentum: 0.000000
2023-10-13 13:57:45,295 epoch 9 - iter 440/447 - loss 0.00653626 - time (sec): 28.24 - samples/sec: 3020.38 - lr: 0.000006 - momentum: 0.000000
2023-10-13 13:57:45,715 ----------------------------------------------------------------------------------------------------
2023-10-13 13:57:45,715 EPOCH 9 done: loss 0.0064 - lr: 0.000006
2023-10-13 13:57:54,102 DEV : loss 0.23335954546928406 - f1-score (micro avg)  0.7839
2023-10-13 13:57:54,149 saving best model
2023-10-13 13:57:54,575 ----------------------------------------------------------------------------------------------------
2023-10-13 13:57:57,353 epoch 10 - iter 44/447 - loss 0.00288759 - time (sec): 2.78 - samples/sec: 3073.92 - lr: 0.000005 - momentum: 0.000000
2023-10-13 13:58:00,065 epoch 10 - iter 88/447 - loss 0.00330904 - time (sec): 5.49 - samples/sec: 2960.13 - lr: 0.000005 - momentum: 0.000000
2023-10-13 13:58:03,373 epoch 10 - iter 132/447 - loss 0.00277460 - time (sec): 8.80 - samples/sec: 2822.37 - lr: 0.000004 - momentum: 0.000000
2023-10-13 13:58:05,952 epoch 10 - iter 176/447 - loss 0.00487730 - time (sec): 11.38 - samples/sec: 2875.90 - lr: 0.000003 - momentum: 0.000000
2023-10-13 13:58:09,197 epoch 10 - iter 220/447 - loss 0.00445612 - time (sec): 14.62 - samples/sec: 2900.22 - lr: 0.000003 - momentum: 0.000000
2023-10-13 13:58:12,356 epoch 10 - iter 264/447 - loss 0.00440312 - time (sec): 17.78 - samples/sec: 2903.11 - lr: 0.000002 - momentum: 0.000000
2023-10-13 13:58:14,993 epoch 10 - iter 308/447 - loss 0.00421309 - time (sec): 20.42 - samples/sec: 2931.56 - lr: 0.000002 - momentum: 0.000000
2023-10-13 13:58:17,590 epoch 10 - iter 352/447 - loss 0.00405346 - time (sec): 23.01 - samples/sec: 2934.16 - lr: 0.000001 - momentum: 0.000000
2023-10-13 13:58:20,514 epoch 10 - iter 396/447 - loss 0.00477773 - time (sec): 25.94 - samples/sec: 2967.92 - lr: 0.000001 - momentum: 0.000000
2023-10-13 13:58:23,187 epoch 10 - iter 440/447 - loss 0.00456760 - time (sec): 28.61 - samples/sec: 2983.33 - lr: 0.000000 - momentum: 0.000000
2023-10-13 13:58:23,592 ----------------------------------------------------------------------------------------------------
2023-10-13 13:58:23,592 EPOCH 10 done: loss 0.0045 - lr: 0.000000
2023-10-13 13:58:31,942 DEV : loss 0.23924623429775238 - f1-score (micro avg)  0.7853
2023-10-13 13:58:31,976 saving best model
2023-10-13 13:58:32,683 ----------------------------------------------------------------------------------------------------
2023-10-13 13:58:32,684 Loading model from best epoch ...
2023-10-13 13:58:34,091 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
2023-10-13 13:58:39,814 
Results:
- F-score (micro) 0.7463
- F-score (macro) 0.6655
- Accuracy 0.6118

By class:
              precision    recall  f1-score   support

         loc     0.8367    0.8423    0.8395       596
        pers     0.6567    0.7928    0.7184       333
         org     0.5039    0.4848    0.4942       132
        prod     0.6038    0.4848    0.5378        66
        time     0.7037    0.7755    0.7379        49

   micro avg     0.7282    0.7653    0.7463      1176
   macro avg     0.6610    0.6761    0.6655      1176
weighted avg     0.7298    0.7653    0.7453      1176

2023-10-13 13:58:39,814 ----------------------------------------------------------------------------------------------------