File size: 24,159 Bytes
a01099d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
2023-10-13 13:52:18,187 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:18,188 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(32001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=21, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-13 13:52:18,188 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:18,188 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
2023-10-13 13:52:18,188 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:18,188 Train: 3575 sentences
2023-10-13 13:52:18,188 (train_with_dev=False, train_with_test=False)
2023-10-13 13:52:18,188 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:18,188 Training Params:
2023-10-13 13:52:18,188 - learning_rate: "5e-05"
2023-10-13 13:52:18,188 - mini_batch_size: "8"
2023-10-13 13:52:18,188 - max_epochs: "10"
2023-10-13 13:52:18,188 - shuffle: "True"
2023-10-13 13:52:18,188 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:18,188 Plugins:
2023-10-13 13:52:18,188 - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 13:52:18,188 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:18,188 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 13:52:18,188 - metric: "('micro avg', 'f1-score')"
2023-10-13 13:52:18,188 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:18,188 Computation:
2023-10-13 13:52:18,189 - compute on device: cuda:0
2023-10-13 13:52:18,189 - embedding storage: none
2023-10-13 13:52:18,189 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:18,189 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-13 13:52:18,189 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:18,189 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:21,622 epoch 1 - iter 44/447 - loss 2.80304392 - time (sec): 3.43 - samples/sec: 2855.55 - lr: 0.000005 - momentum: 0.000000
2023-10-13 13:52:24,408 epoch 1 - iter 88/447 - loss 1.89690895 - time (sec): 6.22 - samples/sec: 3020.50 - lr: 0.000010 - momentum: 0.000000
2023-10-13 13:52:27,111 epoch 1 - iter 132/447 - loss 1.47044904 - time (sec): 8.92 - samples/sec: 3039.37 - lr: 0.000015 - momentum: 0.000000
2023-10-13 13:52:30,098 epoch 1 - iter 176/447 - loss 1.20785199 - time (sec): 11.91 - samples/sec: 3003.46 - lr: 0.000020 - momentum: 0.000000
2023-10-13 13:52:32,766 epoch 1 - iter 220/447 - loss 1.03327036 - time (sec): 14.58 - samples/sec: 3040.46 - lr: 0.000024 - momentum: 0.000000
2023-10-13 13:52:35,528 epoch 1 - iter 264/447 - loss 0.91266769 - time (sec): 17.34 - samples/sec: 3041.19 - lr: 0.000029 - momentum: 0.000000
2023-10-13 13:52:38,240 epoch 1 - iter 308/447 - loss 0.82567581 - time (sec): 20.05 - samples/sec: 3043.77 - lr: 0.000034 - momentum: 0.000000
2023-10-13 13:52:40,937 epoch 1 - iter 352/447 - loss 0.75655968 - time (sec): 22.75 - samples/sec: 3047.57 - lr: 0.000039 - momentum: 0.000000
2023-10-13 13:52:43,500 epoch 1 - iter 396/447 - loss 0.70566723 - time (sec): 25.31 - samples/sec: 3048.34 - lr: 0.000044 - momentum: 0.000000
2023-10-13 13:52:46,292 epoch 1 - iter 440/447 - loss 0.65893566 - time (sec): 28.10 - samples/sec: 3042.80 - lr: 0.000049 - momentum: 0.000000
2023-10-13 13:52:46,683 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:46,683 EPOCH 1 done: loss 0.6536 - lr: 0.000049
2023-10-13 13:52:51,632 DEV : loss 0.1805853396654129 - f1-score (micro avg) 0.5981
2023-10-13 13:52:51,663 saving best model
2023-10-13 13:52:51,967 ----------------------------------------------------------------------------------------------------
2023-10-13 13:52:54,970 epoch 2 - iter 44/447 - loss 0.21737154 - time (sec): 3.00 - samples/sec: 3049.14 - lr: 0.000049 - momentum: 0.000000
2023-10-13 13:52:57,708 epoch 2 - iter 88/447 - loss 0.19897717 - time (sec): 5.74 - samples/sec: 3056.43 - lr: 0.000049 - momentum: 0.000000
2023-10-13 13:53:00,436 epoch 2 - iter 132/447 - loss 0.18115887 - time (sec): 8.47 - samples/sec: 3036.94 - lr: 0.000048 - momentum: 0.000000
2023-10-13 13:53:03,011 epoch 2 - iter 176/447 - loss 0.17788084 - time (sec): 11.04 - samples/sec: 3009.71 - lr: 0.000048 - momentum: 0.000000
2023-10-13 13:53:05,790 epoch 2 - iter 220/447 - loss 0.17534041 - time (sec): 13.82 - samples/sec: 2995.56 - lr: 0.000047 - momentum: 0.000000
2023-10-13 13:53:08,645 epoch 2 - iter 264/447 - loss 0.17589414 - time (sec): 16.68 - samples/sec: 3002.72 - lr: 0.000047 - momentum: 0.000000
2023-10-13 13:53:11,430 epoch 2 - iter 308/447 - loss 0.17338298 - time (sec): 19.46 - samples/sec: 3022.60 - lr: 0.000046 - momentum: 0.000000
2023-10-13 13:53:14,245 epoch 2 - iter 352/447 - loss 0.16761658 - time (sec): 22.28 - samples/sec: 3022.69 - lr: 0.000046 - momentum: 0.000000
2023-10-13 13:53:17,241 epoch 2 - iter 396/447 - loss 0.16105209 - time (sec): 25.27 - samples/sec: 3022.47 - lr: 0.000045 - momentum: 0.000000
2023-10-13 13:53:20,143 epoch 2 - iter 440/447 - loss 0.15642468 - time (sec): 28.17 - samples/sec: 3017.36 - lr: 0.000045 - momentum: 0.000000
2023-10-13 13:53:20,611 ----------------------------------------------------------------------------------------------------
2023-10-13 13:53:20,611 EPOCH 2 done: loss 0.1550 - lr: 0.000045
2023-10-13 13:53:29,109 DEV : loss 0.15057964622974396 - f1-score (micro avg) 0.7063
2023-10-13 13:53:29,142 saving best model
2023-10-13 13:53:29,537 ----------------------------------------------------------------------------------------------------
2023-10-13 13:53:32,262 epoch 3 - iter 44/447 - loss 0.07579220 - time (sec): 2.72 - samples/sec: 3332.73 - lr: 0.000044 - momentum: 0.000000
2023-10-13 13:53:34,966 epoch 3 - iter 88/447 - loss 0.07941142 - time (sec): 5.43 - samples/sec: 3273.81 - lr: 0.000043 - momentum: 0.000000
2023-10-13 13:53:38,158 epoch 3 - iter 132/447 - loss 0.08409869 - time (sec): 8.62 - samples/sec: 3137.62 - lr: 0.000043 - momentum: 0.000000
2023-10-13 13:53:41,107 epoch 3 - iter 176/447 - loss 0.08454449 - time (sec): 11.57 - samples/sec: 3110.22 - lr: 0.000042 - momentum: 0.000000
2023-10-13 13:53:43,996 epoch 3 - iter 220/447 - loss 0.08496677 - time (sec): 14.46 - samples/sec: 3039.05 - lr: 0.000042 - momentum: 0.000000
2023-10-13 13:53:46,740 epoch 3 - iter 264/447 - loss 0.08464658 - time (sec): 17.20 - samples/sec: 3043.20 - lr: 0.000041 - momentum: 0.000000
2023-10-13 13:53:49,549 epoch 3 - iter 308/447 - loss 0.08359817 - time (sec): 20.01 - samples/sec: 3002.88 - lr: 0.000041 - momentum: 0.000000
2023-10-13 13:53:52,567 epoch 3 - iter 352/447 - loss 0.08430508 - time (sec): 23.03 - samples/sec: 2967.62 - lr: 0.000040 - momentum: 0.000000
2023-10-13 13:53:55,292 epoch 3 - iter 396/447 - loss 0.08382783 - time (sec): 25.75 - samples/sec: 2995.30 - lr: 0.000040 - momentum: 0.000000
2023-10-13 13:53:57,974 epoch 3 - iter 440/447 - loss 0.08420380 - time (sec): 28.43 - samples/sec: 2998.20 - lr: 0.000039 - momentum: 0.000000
2023-10-13 13:53:58,449 ----------------------------------------------------------------------------------------------------
2023-10-13 13:53:58,450 EPOCH 3 done: loss 0.0847 - lr: 0.000039
2023-10-13 13:54:07,082 DEV : loss 0.1508309543132782 - f1-score (micro avg) 0.7244
2023-10-13 13:54:07,114 saving best model
2023-10-13 13:54:07,523 ----------------------------------------------------------------------------------------------------
2023-10-13 13:54:10,479 epoch 4 - iter 44/447 - loss 0.05304508 - time (sec): 2.95 - samples/sec: 3103.87 - lr: 0.000038 - momentum: 0.000000
2023-10-13 13:54:13,204 epoch 4 - iter 88/447 - loss 0.05490691 - time (sec): 5.68 - samples/sec: 3049.47 - lr: 0.000038 - momentum: 0.000000
2023-10-13 13:54:16,460 epoch 4 - iter 132/447 - loss 0.05603952 - time (sec): 8.93 - samples/sec: 3062.78 - lr: 0.000037 - momentum: 0.000000
2023-10-13 13:54:19,244 epoch 4 - iter 176/447 - loss 0.05430011 - time (sec): 11.72 - samples/sec: 3015.42 - lr: 0.000037 - momentum: 0.000000
2023-10-13 13:54:22,000 epoch 4 - iter 220/447 - loss 0.05473667 - time (sec): 14.47 - samples/sec: 3016.35 - lr: 0.000036 - momentum: 0.000000
2023-10-13 13:54:25,103 epoch 4 - iter 264/447 - loss 0.05343876 - time (sec): 17.58 - samples/sec: 3017.62 - lr: 0.000036 - momentum: 0.000000
2023-10-13 13:54:27,815 epoch 4 - iter 308/447 - loss 0.05373041 - time (sec): 20.29 - samples/sec: 3016.27 - lr: 0.000035 - momentum: 0.000000
2023-10-13 13:54:30,485 epoch 4 - iter 352/447 - loss 0.05298263 - time (sec): 22.96 - samples/sec: 3009.46 - lr: 0.000035 - momentum: 0.000000
2023-10-13 13:54:33,206 epoch 4 - iter 396/447 - loss 0.05489649 - time (sec): 25.68 - samples/sec: 2998.60 - lr: 0.000034 - momentum: 0.000000
2023-10-13 13:54:36,028 epoch 4 - iter 440/447 - loss 0.05438705 - time (sec): 28.50 - samples/sec: 2992.42 - lr: 0.000033 - momentum: 0.000000
2023-10-13 13:54:36,485 ----------------------------------------------------------------------------------------------------
2023-10-13 13:54:36,485 EPOCH 4 done: loss 0.0544 - lr: 0.000033
2023-10-13 13:54:45,181 DEV : loss 0.1490735560655594 - f1-score (micro avg) 0.7535
2023-10-13 13:54:45,214 saving best model
2023-10-13 13:54:45,613 ----------------------------------------------------------------------------------------------------
2023-10-13 13:54:48,582 epoch 5 - iter 44/447 - loss 0.03436720 - time (sec): 2.97 - samples/sec: 2904.86 - lr: 0.000033 - momentum: 0.000000
2023-10-13 13:54:51,323 epoch 5 - iter 88/447 - loss 0.03358143 - time (sec): 5.71 - samples/sec: 2951.13 - lr: 0.000032 - momentum: 0.000000
2023-10-13 13:54:53,986 epoch 5 - iter 132/447 - loss 0.03188978 - time (sec): 8.37 - samples/sec: 2969.83 - lr: 0.000032 - momentum: 0.000000
2023-10-13 13:54:56,951 epoch 5 - iter 176/447 - loss 0.03397266 - time (sec): 11.34 - samples/sec: 3032.31 - lr: 0.000031 - momentum: 0.000000
2023-10-13 13:54:59,853 epoch 5 - iter 220/447 - loss 0.03755977 - time (sec): 14.24 - samples/sec: 3047.91 - lr: 0.000031 - momentum: 0.000000
2023-10-13 13:55:02,845 epoch 5 - iter 264/447 - loss 0.03734981 - time (sec): 17.23 - samples/sec: 3036.76 - lr: 0.000030 - momentum: 0.000000
2023-10-13 13:55:05,483 epoch 5 - iter 308/447 - loss 0.03737218 - time (sec): 19.87 - samples/sec: 3041.74 - lr: 0.000030 - momentum: 0.000000
2023-10-13 13:55:08,295 epoch 5 - iter 352/447 - loss 0.03758080 - time (sec): 22.68 - samples/sec: 3046.49 - lr: 0.000029 - momentum: 0.000000
2023-10-13 13:55:10,968 epoch 5 - iter 396/447 - loss 0.03764803 - time (sec): 25.35 - samples/sec: 3037.80 - lr: 0.000028 - momentum: 0.000000
2023-10-13 13:55:13,794 epoch 5 - iter 440/447 - loss 0.03690605 - time (sec): 28.18 - samples/sec: 3024.48 - lr: 0.000028 - momentum: 0.000000
2023-10-13 13:55:14,221 ----------------------------------------------------------------------------------------------------
2023-10-13 13:55:14,221 EPOCH 5 done: loss 0.0367 - lr: 0.000028
2023-10-13 13:55:22,677 DEV : loss 0.1890304833650589 - f1-score (micro avg) 0.7566
2023-10-13 13:55:22,709 saving best model
2023-10-13 13:55:23,122 ----------------------------------------------------------------------------------------------------
2023-10-13 13:55:25,741 epoch 6 - iter 44/447 - loss 0.01994334 - time (sec): 2.62 - samples/sec: 3158.60 - lr: 0.000027 - momentum: 0.000000
2023-10-13 13:55:28,554 epoch 6 - iter 88/447 - loss 0.02422846 - time (sec): 5.43 - samples/sec: 3070.83 - lr: 0.000027 - momentum: 0.000000
2023-10-13 13:55:31,909 epoch 6 - iter 132/447 - loss 0.02376942 - time (sec): 8.79 - samples/sec: 3058.05 - lr: 0.000026 - momentum: 0.000000
2023-10-13 13:55:34,772 epoch 6 - iter 176/447 - loss 0.02490342 - time (sec): 11.65 - samples/sec: 3048.64 - lr: 0.000026 - momentum: 0.000000
2023-10-13 13:55:37,643 epoch 6 - iter 220/447 - loss 0.02396279 - time (sec): 14.52 - samples/sec: 3083.56 - lr: 0.000025 - momentum: 0.000000
2023-10-13 13:55:40,417 epoch 6 - iter 264/447 - loss 0.02424836 - time (sec): 17.29 - samples/sec: 3065.45 - lr: 0.000025 - momentum: 0.000000
2023-10-13 13:55:43,124 epoch 6 - iter 308/447 - loss 0.02495930 - time (sec): 20.00 - samples/sec: 3046.22 - lr: 0.000024 - momentum: 0.000000
2023-10-13 13:55:45,698 epoch 6 - iter 352/447 - loss 0.02502682 - time (sec): 22.57 - samples/sec: 3065.48 - lr: 0.000023 - momentum: 0.000000
2023-10-13 13:55:48,469 epoch 6 - iter 396/447 - loss 0.02486617 - time (sec): 25.35 - samples/sec: 3063.90 - lr: 0.000023 - momentum: 0.000000
2023-10-13 13:55:51,039 epoch 6 - iter 440/447 - loss 0.02471361 - time (sec): 27.92 - samples/sec: 3051.50 - lr: 0.000022 - momentum: 0.000000
2023-10-13 13:55:51,467 ----------------------------------------------------------------------------------------------------
2023-10-13 13:55:51,467 EPOCH 6 done: loss 0.0245 - lr: 0.000022
2023-10-13 13:56:00,211 DEV : loss 0.20025420188903809 - f1-score (micro avg) 0.7608
2023-10-13 13:56:00,243 saving best model
2023-10-13 13:56:00,662 ----------------------------------------------------------------------------------------------------
2023-10-13 13:56:03,244 epoch 7 - iter 44/447 - loss 0.03159210 - time (sec): 2.58 - samples/sec: 2982.07 - lr: 0.000022 - momentum: 0.000000
2023-10-13 13:56:05,871 epoch 7 - iter 88/447 - loss 0.02117470 - time (sec): 5.21 - samples/sec: 2970.34 - lr: 0.000021 - momentum: 0.000000
2023-10-13 13:56:09,050 epoch 7 - iter 132/447 - loss 0.01682505 - time (sec): 8.39 - samples/sec: 2985.75 - lr: 0.000021 - momentum: 0.000000
2023-10-13 13:56:11,821 epoch 7 - iter 176/447 - loss 0.01583735 - time (sec): 11.16 - samples/sec: 3021.13 - lr: 0.000020 - momentum: 0.000000
2023-10-13 13:56:14,739 epoch 7 - iter 220/447 - loss 0.01568590 - time (sec): 14.07 - samples/sec: 3019.51 - lr: 0.000020 - momentum: 0.000000
2023-10-13 13:56:17,684 epoch 7 - iter 264/447 - loss 0.01455990 - time (sec): 17.02 - samples/sec: 2983.40 - lr: 0.000019 - momentum: 0.000000
2023-10-13 13:56:20,385 epoch 7 - iter 308/447 - loss 0.01564589 - time (sec): 19.72 - samples/sec: 2994.82 - lr: 0.000018 - momentum: 0.000000
2023-10-13 13:56:23,491 epoch 7 - iter 352/447 - loss 0.01560294 - time (sec): 22.83 - samples/sec: 2982.24 - lr: 0.000018 - momentum: 0.000000
2023-10-13 13:56:26,186 epoch 7 - iter 396/447 - loss 0.01510732 - time (sec): 25.52 - samples/sec: 2999.36 - lr: 0.000017 - momentum: 0.000000
2023-10-13 13:56:28,972 epoch 7 - iter 440/447 - loss 0.01441825 - time (sec): 28.31 - samples/sec: 3009.18 - lr: 0.000017 - momentum: 0.000000
2023-10-13 13:56:29,419 ----------------------------------------------------------------------------------------------------
2023-10-13 13:56:29,419 EPOCH 7 done: loss 0.0143 - lr: 0.000017
2023-10-13 13:56:38,590 DEV : loss 0.22453096508979797 - f1-score (micro avg) 0.7614
2023-10-13 13:56:38,637 saving best model
2023-10-13 13:56:39,102 ----------------------------------------------------------------------------------------------------
2023-10-13 13:56:42,027 epoch 8 - iter 44/447 - loss 0.02136768 - time (sec): 2.92 - samples/sec: 2850.76 - lr: 0.000016 - momentum: 0.000000
2023-10-13 13:56:44,869 epoch 8 - iter 88/447 - loss 0.01238681 - time (sec): 5.76 - samples/sec: 2874.37 - lr: 0.000016 - momentum: 0.000000
2023-10-13 13:56:47,878 epoch 8 - iter 132/447 - loss 0.01270474 - time (sec): 8.77 - samples/sec: 2944.00 - lr: 0.000015 - momentum: 0.000000
2023-10-13 13:56:50,949 epoch 8 - iter 176/447 - loss 0.01180657 - time (sec): 11.84 - samples/sec: 2964.03 - lr: 0.000015 - momentum: 0.000000
2023-10-13 13:56:53,931 epoch 8 - iter 220/447 - loss 0.01182640 - time (sec): 14.83 - samples/sec: 2944.03 - lr: 0.000014 - momentum: 0.000000
2023-10-13 13:56:56,513 epoch 8 - iter 264/447 - loss 0.01218369 - time (sec): 17.41 - samples/sec: 2972.81 - lr: 0.000013 - momentum: 0.000000
2023-10-13 13:56:59,336 epoch 8 - iter 308/447 - loss 0.01137181 - time (sec): 20.23 - samples/sec: 2969.57 - lr: 0.000013 - momentum: 0.000000
2023-10-13 13:57:02,018 epoch 8 - iter 352/447 - loss 0.01080205 - time (sec): 22.91 - samples/sec: 2986.53 - lr: 0.000012 - momentum: 0.000000
2023-10-13 13:57:04,779 epoch 8 - iter 396/447 - loss 0.00997545 - time (sec): 25.68 - samples/sec: 2988.77 - lr: 0.000012 - momentum: 0.000000
2023-10-13 13:57:07,732 epoch 8 - iter 440/447 - loss 0.00947122 - time (sec): 28.63 - samples/sec: 2981.97 - lr: 0.000011 - momentum: 0.000000
2023-10-13 13:57:08,116 ----------------------------------------------------------------------------------------------------
2023-10-13 13:57:08,116 EPOCH 8 done: loss 0.0094 - lr: 0.000011
2023-10-13 13:57:16,674 DEV : loss 0.23534463346004486 - f1-score (micro avg) 0.783
2023-10-13 13:57:16,705 saving best model
2023-10-13 13:57:17,051 ----------------------------------------------------------------------------------------------------
2023-10-13 13:57:19,655 epoch 9 - iter 44/447 - loss 0.00423546 - time (sec): 2.60 - samples/sec: 3143.55 - lr: 0.000011 - momentum: 0.000000
2023-10-13 13:57:22,730 epoch 9 - iter 88/447 - loss 0.00445111 - time (sec): 5.68 - samples/sec: 3081.95 - lr: 0.000010 - momentum: 0.000000
2023-10-13 13:57:25,724 epoch 9 - iter 132/447 - loss 0.00390275 - time (sec): 8.67 - samples/sec: 3066.27 - lr: 0.000010 - momentum: 0.000000
2023-10-13 13:57:28,490 epoch 9 - iter 176/447 - loss 0.00514473 - time (sec): 11.44 - samples/sec: 3064.22 - lr: 0.000009 - momentum: 0.000000
2023-10-13 13:57:31,331 epoch 9 - iter 220/447 - loss 0.00557898 - time (sec): 14.28 - samples/sec: 3024.88 - lr: 0.000008 - momentum: 0.000000
2023-10-13 13:57:34,094 epoch 9 - iter 264/447 - loss 0.00642635 - time (sec): 17.04 - samples/sec: 3018.71 - lr: 0.000008 - momentum: 0.000000
2023-10-13 13:57:36,796 epoch 9 - iter 308/447 - loss 0.00721538 - time (sec): 19.74 - samples/sec: 3036.37 - lr: 0.000007 - momentum: 0.000000
2023-10-13 13:57:39,544 epoch 9 - iter 352/447 - loss 0.00668215 - time (sec): 22.49 - samples/sec: 3049.79 - lr: 0.000007 - momentum: 0.000000
2023-10-13 13:57:42,501 epoch 9 - iter 396/447 - loss 0.00679635 - time (sec): 25.45 - samples/sec: 3024.59 - lr: 0.000006 - momentum: 0.000000
2023-10-13 13:57:45,295 epoch 9 - iter 440/447 - loss 0.00653626 - time (sec): 28.24 - samples/sec: 3020.38 - lr: 0.000006 - momentum: 0.000000
2023-10-13 13:57:45,715 ----------------------------------------------------------------------------------------------------
2023-10-13 13:57:45,715 EPOCH 9 done: loss 0.0064 - lr: 0.000006
2023-10-13 13:57:54,102 DEV : loss 0.23335954546928406 - f1-score (micro avg) 0.7839
2023-10-13 13:57:54,149 saving best model
2023-10-13 13:57:54,575 ----------------------------------------------------------------------------------------------------
2023-10-13 13:57:57,353 epoch 10 - iter 44/447 - loss 0.00288759 - time (sec): 2.78 - samples/sec: 3073.92 - lr: 0.000005 - momentum: 0.000000
2023-10-13 13:58:00,065 epoch 10 - iter 88/447 - loss 0.00330904 - time (sec): 5.49 - samples/sec: 2960.13 - lr: 0.000005 - momentum: 0.000000
2023-10-13 13:58:03,373 epoch 10 - iter 132/447 - loss 0.00277460 - time (sec): 8.80 - samples/sec: 2822.37 - lr: 0.000004 - momentum: 0.000000
2023-10-13 13:58:05,952 epoch 10 - iter 176/447 - loss 0.00487730 - time (sec): 11.38 - samples/sec: 2875.90 - lr: 0.000003 - momentum: 0.000000
2023-10-13 13:58:09,197 epoch 10 - iter 220/447 - loss 0.00445612 - time (sec): 14.62 - samples/sec: 2900.22 - lr: 0.000003 - momentum: 0.000000
2023-10-13 13:58:12,356 epoch 10 - iter 264/447 - loss 0.00440312 - time (sec): 17.78 - samples/sec: 2903.11 - lr: 0.000002 - momentum: 0.000000
2023-10-13 13:58:14,993 epoch 10 - iter 308/447 - loss 0.00421309 - time (sec): 20.42 - samples/sec: 2931.56 - lr: 0.000002 - momentum: 0.000000
2023-10-13 13:58:17,590 epoch 10 - iter 352/447 - loss 0.00405346 - time (sec): 23.01 - samples/sec: 2934.16 - lr: 0.000001 - momentum: 0.000000
2023-10-13 13:58:20,514 epoch 10 - iter 396/447 - loss 0.00477773 - time (sec): 25.94 - samples/sec: 2967.92 - lr: 0.000001 - momentum: 0.000000
2023-10-13 13:58:23,187 epoch 10 - iter 440/447 - loss 0.00456760 - time (sec): 28.61 - samples/sec: 2983.33 - lr: 0.000000 - momentum: 0.000000
2023-10-13 13:58:23,592 ----------------------------------------------------------------------------------------------------
2023-10-13 13:58:23,592 EPOCH 10 done: loss 0.0045 - lr: 0.000000
2023-10-13 13:58:31,942 DEV : loss 0.23924623429775238 - f1-score (micro avg) 0.7853
2023-10-13 13:58:31,976 saving best model
2023-10-13 13:58:32,683 ----------------------------------------------------------------------------------------------------
2023-10-13 13:58:32,684 Loading model from best epoch ...
2023-10-13 13:58:34,091 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
2023-10-13 13:58:39,814
Results:
- F-score (micro) 0.7463
- F-score (macro) 0.6655
- Accuracy 0.6118
By class:
precision recall f1-score support
loc 0.8367 0.8423 0.8395 596
pers 0.6567 0.7928 0.7184 333
org 0.5039 0.4848 0.4942 132
prod 0.6038 0.4848 0.5378 66
time 0.7037 0.7755 0.7379 49
micro avg 0.7282 0.7653 0.7463 1176
macro avg 0.6610 0.6761 0.6655 1176
weighted avg 0.7298 0.7653 0.7453 1176
2023-10-13 13:58:39,814 ----------------------------------------------------------------------------------------------------
|