Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +247 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb97d07f977e13664541f5fa722090786be50068b377f8fa9c8771bef07c2cd8
|
3 |
+
size 443335879
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 14:08:58 0.0000 0.5727 0.1898 0.5619 0.6247 0.5916 0.4357
|
3 |
+
2 14:09:51 0.0000 0.1577 0.1675 0.6934 0.7021 0.6977 0.5543
|
4 |
+
3 14:10:40 0.0000 0.0939 0.2000 0.7538 0.7060 0.7291 0.5921
|
5 |
+
4 14:11:32 0.0000 0.0638 0.2237 0.7581 0.7326 0.7451 0.6080
|
6 |
+
5 14:12:22 0.0000 0.0441 0.2385 0.7788 0.7185 0.7475 0.6143
|
7 |
+
6 14:13:13 0.0000 0.0293 0.2394 0.7629 0.7522 0.7575 0.6255
|
8 |
+
7 14:14:07 0.0000 0.0209 0.2525 0.7654 0.7576 0.7615 0.6321
|
9 |
+
8 14:15:00 0.0000 0.0094 0.2569 0.7765 0.7553 0.7658 0.6368
|
10 |
+
9 14:15:52 0.0000 0.0069 0.2671 0.7773 0.7694 0.7733 0.6444
|
11 |
+
10 14:16:43 0.0000 0.0051 0.2596 0.7819 0.7654 0.7736 0.6445
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-13 14:08:11,374 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-13 14:08:11,375 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-13 14:08:11,375 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-13 14:08:11,375 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
|
53 |
+
2023-10-13 14:08:11,375 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-13 14:08:11,375 Train: 3575 sentences
|
55 |
+
2023-10-13 14:08:11,375 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-13 14:08:11,375 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-13 14:08:11,375 Training Params:
|
58 |
+
2023-10-13 14:08:11,375 - learning_rate: "5e-05"
|
59 |
+
2023-10-13 14:08:11,375 - mini_batch_size: "4"
|
60 |
+
2023-10-13 14:08:11,375 - max_epochs: "10"
|
61 |
+
2023-10-13 14:08:11,375 - shuffle: "True"
|
62 |
+
2023-10-13 14:08:11,375 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-13 14:08:11,375 Plugins:
|
64 |
+
2023-10-13 14:08:11,375 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-10-13 14:08:11,375 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-13 14:08:11,375 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-10-13 14:08:11,375 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-10-13 14:08:11,375 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-10-13 14:08:11,375 Computation:
|
70 |
+
2023-10-13 14:08:11,376 - compute on device: cuda:0
|
71 |
+
2023-10-13 14:08:11,376 - embedding storage: none
|
72 |
+
2023-10-13 14:08:11,376 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-13 14:08:11,376 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5"
|
74 |
+
2023-10-13 14:08:11,376 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-10-13 14:08:11,376 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-13 14:08:15,898 epoch 1 - iter 89/894 - loss 2.52923575 - time (sec): 4.52 - samples/sec: 2182.09 - lr: 0.000005 - momentum: 0.000000
|
77 |
+
2023-10-13 14:08:20,012 epoch 1 - iter 178/894 - loss 1.58342524 - time (sec): 8.64 - samples/sec: 2207.18 - lr: 0.000010 - momentum: 0.000000
|
78 |
+
2023-10-13 14:08:24,203 epoch 1 - iter 267/894 - loss 1.23639423 - time (sec): 12.83 - samples/sec: 2136.52 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-13 14:08:28,550 epoch 1 - iter 356/894 - loss 1.01715624 - time (sec): 17.17 - samples/sec: 2108.54 - lr: 0.000020 - momentum: 0.000000
|
80 |
+
2023-10-13 14:08:32,844 epoch 1 - iter 445/894 - loss 0.87794477 - time (sec): 21.47 - samples/sec: 2090.89 - lr: 0.000025 - momentum: 0.000000
|
81 |
+
2023-10-13 14:08:36,910 epoch 1 - iter 534/894 - loss 0.77886231 - time (sec): 25.53 - samples/sec: 2086.30 - lr: 0.000030 - momentum: 0.000000
|
82 |
+
2023-10-13 14:08:40,939 epoch 1 - iter 623/894 - loss 0.70820496 - time (sec): 29.56 - samples/sec: 2091.56 - lr: 0.000035 - momentum: 0.000000
|
83 |
+
2023-10-13 14:08:45,129 epoch 1 - iter 712/894 - loss 0.65158695 - time (sec): 33.75 - samples/sec: 2073.39 - lr: 0.000040 - momentum: 0.000000
|
84 |
+
2023-10-13 14:08:49,139 epoch 1 - iter 801/894 - loss 0.60985499 - time (sec): 37.76 - samples/sec: 2064.58 - lr: 0.000045 - momentum: 0.000000
|
85 |
+
2023-10-13 14:08:53,278 epoch 1 - iter 890/894 - loss 0.57386967 - time (sec): 41.90 - samples/sec: 2057.76 - lr: 0.000050 - momentum: 0.000000
|
86 |
+
2023-10-13 14:08:53,459 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-13 14:08:53,459 EPOCH 1 done: loss 0.5727 - lr: 0.000050
|
88 |
+
2023-10-13 14:08:58,500 DEV : loss 0.18978139758110046 - f1-score (micro avg) 0.5916
|
89 |
+
2023-10-13 14:08:58,525 saving best model
|
90 |
+
2023-10-13 14:08:58,878 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-10-13 14:09:03,117 epoch 2 - iter 89/894 - loss 0.21194614 - time (sec): 4.24 - samples/sec: 2181.41 - lr: 0.000049 - momentum: 0.000000
|
92 |
+
2023-10-13 14:09:07,553 epoch 2 - iter 178/894 - loss 0.19054416 - time (sec): 8.67 - samples/sec: 2045.48 - lr: 0.000049 - momentum: 0.000000
|
93 |
+
2023-10-13 14:09:12,119 epoch 2 - iter 267/894 - loss 0.17595858 - time (sec): 13.24 - samples/sec: 1960.01 - lr: 0.000048 - momentum: 0.000000
|
94 |
+
2023-10-13 14:09:16,730 epoch 2 - iter 356/894 - loss 0.17594605 - time (sec): 17.85 - samples/sec: 1879.92 - lr: 0.000048 - momentum: 0.000000
|
95 |
+
2023-10-13 14:09:21,206 epoch 2 - iter 445/894 - loss 0.17142673 - time (sec): 22.33 - samples/sec: 1886.32 - lr: 0.000047 - momentum: 0.000000
|
96 |
+
2023-10-13 14:09:25,650 epoch 2 - iter 534/894 - loss 0.16657106 - time (sec): 26.77 - samples/sec: 1893.29 - lr: 0.000047 - momentum: 0.000000
|
97 |
+
2023-10-13 14:09:29,793 epoch 2 - iter 623/894 - loss 0.16819979 - time (sec): 30.91 - samples/sec: 1920.54 - lr: 0.000046 - momentum: 0.000000
|
98 |
+
2023-10-13 14:09:33,961 epoch 2 - iter 712/894 - loss 0.16248898 - time (sec): 35.08 - samples/sec: 1942.69 - lr: 0.000046 - momentum: 0.000000
|
99 |
+
2023-10-13 14:09:38,270 epoch 2 - iter 801/894 - loss 0.16082101 - time (sec): 39.39 - samples/sec: 1957.79 - lr: 0.000045 - momentum: 0.000000
|
100 |
+
2023-10-13 14:09:42,495 epoch 2 - iter 890/894 - loss 0.15753470 - time (sec): 43.62 - samples/sec: 1972.33 - lr: 0.000044 - momentum: 0.000000
|
101 |
+
2023-10-13 14:09:42,682 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-10-13 14:09:42,682 EPOCH 2 done: loss 0.1577 - lr: 0.000044
|
103 |
+
2023-10-13 14:09:51,308 DEV : loss 0.16749663650989532 - f1-score (micro avg) 0.6977
|
104 |
+
2023-10-13 14:09:51,338 saving best model
|
105 |
+
2023-10-13 14:09:51,838 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-10-13 14:09:55,733 epoch 3 - iter 89/894 - loss 0.08007067 - time (sec): 3.89 - samples/sec: 2360.54 - lr: 0.000044 - momentum: 0.000000
|
107 |
+
2023-10-13 14:09:59,650 epoch 3 - iter 178/894 - loss 0.07640027 - time (sec): 7.81 - samples/sec: 2295.76 - lr: 0.000043 - momentum: 0.000000
|
108 |
+
2023-10-13 14:10:03,873 epoch 3 - iter 267/894 - loss 0.08683829 - time (sec): 12.03 - samples/sec: 2266.26 - lr: 0.000043 - momentum: 0.000000
|
109 |
+
2023-10-13 14:10:07,876 epoch 3 - iter 356/894 - loss 0.09438784 - time (sec): 16.04 - samples/sec: 2263.33 - lr: 0.000042 - momentum: 0.000000
|
110 |
+
2023-10-13 14:10:11,886 epoch 3 - iter 445/894 - loss 0.09349886 - time (sec): 20.05 - samples/sec: 2216.06 - lr: 0.000042 - momentum: 0.000000
|
111 |
+
2023-10-13 14:10:15,754 epoch 3 - iter 534/894 - loss 0.09086137 - time (sec): 23.91 - samples/sec: 2207.82 - lr: 0.000041 - momentum: 0.000000
|
112 |
+
2023-10-13 14:10:19,673 epoch 3 - iter 623/894 - loss 0.09013375 - time (sec): 27.83 - samples/sec: 2181.57 - lr: 0.000041 - momentum: 0.000000
|
113 |
+
2023-10-13 14:10:23,738 epoch 3 - iter 712/894 - loss 0.09024790 - time (sec): 31.90 - samples/sec: 2171.31 - lr: 0.000040 - momentum: 0.000000
|
114 |
+
2023-10-13 14:10:27,643 epoch 3 - iter 801/894 - loss 0.09257071 - time (sec): 35.80 - samples/sec: 2178.38 - lr: 0.000039 - momentum: 0.000000
|
115 |
+
2023-10-13 14:10:31,533 epoch 3 - iter 890/894 - loss 0.09331365 - time (sec): 39.69 - samples/sec: 2172.02 - lr: 0.000039 - momentum: 0.000000
|
116 |
+
2023-10-13 14:10:31,707 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-10-13 14:10:31,707 EPOCH 3 done: loss 0.0939 - lr: 0.000039
|
118 |
+
2023-10-13 14:10:40,166 DEV : loss 0.1999683529138565 - f1-score (micro avg) 0.7291
|
119 |
+
2023-10-13 14:10:40,193 saving best model
|
120 |
+
2023-10-13 14:10:40,669 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-10-13 14:10:44,976 epoch 4 - iter 89/894 - loss 0.07161300 - time (sec): 4.30 - samples/sec: 2161.37 - lr: 0.000038 - momentum: 0.000000
|
122 |
+
2023-10-13 14:10:49,749 epoch 4 - iter 178/894 - loss 0.06237632 - time (sec): 9.07 - samples/sec: 1927.98 - lr: 0.000038 - momentum: 0.000000
|
123 |
+
2023-10-13 14:10:54,687 epoch 4 - iter 267/894 - loss 0.06571349 - time (sec): 14.01 - samples/sec: 1972.83 - lr: 0.000037 - momentum: 0.000000
|
124 |
+
2023-10-13 14:10:58,893 epoch 4 - iter 356/894 - loss 0.06326807 - time (sec): 18.22 - samples/sec: 1959.55 - lr: 0.000037 - momentum: 0.000000
|
125 |
+
2023-10-13 14:11:03,057 epoch 4 - iter 445/894 - loss 0.06462152 - time (sec): 22.38 - samples/sec: 1972.59 - lr: 0.000036 - momentum: 0.000000
|
126 |
+
2023-10-13 14:11:07,375 epoch 4 - iter 534/894 - loss 0.06356342 - time (sec): 26.70 - samples/sec: 2004.24 - lr: 0.000036 - momentum: 0.000000
|
127 |
+
2023-10-13 14:11:11,407 epoch 4 - iter 623/894 - loss 0.06359237 - time (sec): 30.73 - samples/sec: 2007.14 - lr: 0.000035 - momentum: 0.000000
|
128 |
+
2023-10-13 14:11:15,432 epoch 4 - iter 712/894 - loss 0.06394484 - time (sec): 34.76 - samples/sec: 2010.72 - lr: 0.000034 - momentum: 0.000000
|
129 |
+
2023-10-13 14:11:19,477 epoch 4 - iter 801/894 - loss 0.06383650 - time (sec): 38.80 - samples/sec: 2010.42 - lr: 0.000034 - momentum: 0.000000
|
130 |
+
2023-10-13 14:11:23,578 epoch 4 - iter 890/894 - loss 0.06368701 - time (sec): 42.90 - samples/sec: 2009.83 - lr: 0.000033 - momentum: 0.000000
|
131 |
+
2023-10-13 14:11:23,755 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-10-13 14:11:23,755 EPOCH 4 done: loss 0.0638 - lr: 0.000033
|
133 |
+
2023-10-13 14:11:32,038 DEV : loss 0.22368095815181732 - f1-score (micro avg) 0.7451
|
134 |
+
2023-10-13 14:11:32,065 saving best model
|
135 |
+
2023-10-13 14:11:32,473 ----------------------------------------------------------------------------------------------------
|
136 |
+
2023-10-13 14:11:36,581 epoch 5 - iter 89/894 - loss 0.05326395 - time (sec): 4.10 - samples/sec: 2126.63 - lr: 0.000033 - momentum: 0.000000
|
137 |
+
2023-10-13 14:11:40,582 epoch 5 - iter 178/894 - loss 0.04466412 - time (sec): 8.10 - samples/sec: 2102.13 - lr: 0.000032 - momentum: 0.000000
|
138 |
+
2023-10-13 14:11:44,899 epoch 5 - iter 267/894 - loss 0.04574289 - time (sec): 12.42 - samples/sec: 2112.80 - lr: 0.000032 - momentum: 0.000000
|
139 |
+
2023-10-13 14:11:48,919 epoch 5 - iter 356/894 - loss 0.04504252 - time (sec): 16.44 - samples/sec: 2116.26 - lr: 0.000031 - momentum: 0.000000
|
140 |
+
2023-10-13 14:11:53,162 epoch 5 - iter 445/894 - loss 0.04436721 - time (sec): 20.68 - samples/sec: 2130.98 - lr: 0.000031 - momentum: 0.000000
|
141 |
+
2023-10-13 14:11:57,502 epoch 5 - iter 534/894 - loss 0.04372206 - time (sec): 25.02 - samples/sec: 2107.92 - lr: 0.000030 - momentum: 0.000000
|
142 |
+
2023-10-13 14:12:01,606 epoch 5 - iter 623/894 - loss 0.04442546 - time (sec): 29.13 - samples/sec: 2096.61 - lr: 0.000029 - momentum: 0.000000
|
143 |
+
2023-10-13 14:12:05,829 epoch 5 - iter 712/894 - loss 0.04469383 - time (sec): 33.35 - samples/sec: 2095.05 - lr: 0.000029 - momentum: 0.000000
|
144 |
+
2023-10-13 14:12:09,867 epoch 5 - iter 801/894 - loss 0.04557369 - time (sec): 37.39 - samples/sec: 2080.06 - lr: 0.000028 - momentum: 0.000000
|
145 |
+
2023-10-13 14:12:14,004 epoch 5 - iter 890/894 - loss 0.04426329 - time (sec): 41.52 - samples/sec: 2074.21 - lr: 0.000028 - momentum: 0.000000
|
146 |
+
2023-10-13 14:12:14,193 ----------------------------------------------------------------------------------------------------
|
147 |
+
2023-10-13 14:12:14,193 EPOCH 5 done: loss 0.0441 - lr: 0.000028
|
148 |
+
2023-10-13 14:12:22,702 DEV : loss 0.23852457106113434 - f1-score (micro avg) 0.7475
|
149 |
+
2023-10-13 14:12:22,729 saving best model
|
150 |
+
2023-10-13 14:12:23,193 ----------------------------------------------------------------------------------------------------
|
151 |
+
2023-10-13 14:12:27,238 epoch 6 - iter 89/894 - loss 0.01889556 - time (sec): 4.04 - samples/sec: 2069.29 - lr: 0.000027 - momentum: 0.000000
|
152 |
+
2023-10-13 14:12:31,500 epoch 6 - iter 178/894 - loss 0.02626898 - time (sec): 8.30 - samples/sec: 2019.45 - lr: 0.000027 - momentum: 0.000000
|
153 |
+
2023-10-13 14:12:36,124 epoch 6 - iter 267/894 - loss 0.02606331 - time (sec): 12.93 - samples/sec: 2097.55 - lr: 0.000026 - momentum: 0.000000
|
154 |
+
2023-10-13 14:12:40,260 epoch 6 - iter 356/894 - loss 0.02937353 - time (sec): 17.06 - samples/sec: 2099.91 - lr: 0.000026 - momentum: 0.000000
|
155 |
+
2023-10-13 14:12:44,576 epoch 6 - iter 445/894 - loss 0.02750190 - time (sec): 21.38 - samples/sec: 2134.02 - lr: 0.000025 - momentum: 0.000000
|
156 |
+
2023-10-13 14:12:48,628 epoch 6 - iter 534/894 - loss 0.02780421 - time (sec): 25.43 - samples/sec: 2105.98 - lr: 0.000024 - momentum: 0.000000
|
157 |
+
2023-10-13 14:12:52,732 epoch 6 - iter 623/894 - loss 0.02856228 - time (sec): 29.54 - samples/sec: 2085.01 - lr: 0.000024 - momentum: 0.000000
|
158 |
+
2023-10-13 14:12:56,924 epoch 6 - iter 712/894 - loss 0.02984563 - time (sec): 33.73 - samples/sec: 2073.64 - lr: 0.000023 - momentum: 0.000000
|
159 |
+
2023-10-13 14:13:00,987 epoch 6 - iter 801/894 - loss 0.02950493 - time (sec): 37.79 - samples/sec: 2076.16 - lr: 0.000023 - momentum: 0.000000
|
160 |
+
2023-10-13 14:13:05,151 epoch 6 - iter 890/894 - loss 0.02941361 - time (sec): 41.96 - samples/sec: 2053.84 - lr: 0.000022 - momentum: 0.000000
|
161 |
+
2023-10-13 14:13:05,332 ----------------------------------------------------------------------------------------------------
|
162 |
+
2023-10-13 14:13:05,333 EPOCH 6 done: loss 0.0293 - lr: 0.000022
|
163 |
+
2023-10-13 14:13:13,835 DEV : loss 0.23937579989433289 - f1-score (micro avg) 0.7575
|
164 |
+
2023-10-13 14:13:13,863 saving best model
|
165 |
+
2023-10-13 14:13:14,366 ----------------------------------------------------------------------------------------------------
|
166 |
+
2023-10-13 14:13:18,512 epoch 7 - iter 89/894 - loss 0.01705401 - time (sec): 4.14 - samples/sec: 1884.74 - lr: 0.000022 - momentum: 0.000000
|
167 |
+
2023-10-13 14:13:22,533 epoch 7 - iter 178/894 - loss 0.01759034 - time (sec): 8.17 - samples/sec: 1917.37 - lr: 0.000021 - momentum: 0.000000
|
168 |
+
2023-10-13 14:13:27,065 epoch 7 - iter 267/894 - loss 0.01849552 - time (sec): 12.70 - samples/sec: 1997.91 - lr: 0.000021 - momentum: 0.000000
|
169 |
+
2023-10-13 14:13:31,220 epoch 7 - iter 356/894 - loss 0.02024248 - time (sec): 16.85 - samples/sec: 2024.97 - lr: 0.000020 - momentum: 0.000000
|
170 |
+
2023-10-13 14:13:35,408 epoch 7 - iter 445/894 - loss 0.02149739 - time (sec): 21.04 - samples/sec: 2048.75 - lr: 0.000019 - momentum: 0.000000
|
171 |
+
2023-10-13 14:13:39,801 epoch 7 - iter 534/894 - loss 0.01928417 - time (sec): 25.43 - samples/sec: 2018.47 - lr: 0.000019 - momentum: 0.000000
|
172 |
+
2023-10-13 14:13:44,296 epoch 7 - iter 623/894 - loss 0.02198540 - time (sec): 29.93 - samples/sec: 1990.90 - lr: 0.000018 - momentum: 0.000000
|
173 |
+
2023-10-13 14:13:49,168 epoch 7 - iter 712/894 - loss 0.02082455 - time (sec): 34.80 - samples/sec: 1978.14 - lr: 0.000018 - momentum: 0.000000
|
174 |
+
2023-10-13 14:13:53,734 epoch 7 - iter 801/894 - loss 0.02160685 - time (sec): 39.37 - samples/sec: 1966.85 - lr: 0.000017 - momentum: 0.000000
|
175 |
+
2023-10-13 14:13:58,424 epoch 7 - iter 890/894 - loss 0.02101591 - time (sec): 44.06 - samples/sec: 1955.83 - lr: 0.000017 - momentum: 0.000000
|
176 |
+
2023-10-13 14:13:58,627 ----------------------------------------------------------------------------------------------------
|
177 |
+
2023-10-13 14:13:58,627 EPOCH 7 done: loss 0.0209 - lr: 0.000017
|
178 |
+
2023-10-13 14:14:07,516 DEV : loss 0.2525382936000824 - f1-score (micro avg) 0.7615
|
179 |
+
2023-10-13 14:14:07,560 saving best model
|
180 |
+
2023-10-13 14:14:08,054 ----------------------------------------------------------------------------------------------------
|
181 |
+
2023-10-13 14:14:12,693 epoch 8 - iter 89/894 - loss 0.01225659 - time (sec): 4.64 - samples/sec: 1823.64 - lr: 0.000016 - momentum: 0.000000
|
182 |
+
2023-10-13 14:14:17,331 epoch 8 - iter 178/894 - loss 0.00698362 - time (sec): 9.28 - samples/sec: 1794.94 - lr: 0.000016 - momentum: 0.000000
|
183 |
+
2023-10-13 14:14:22,187 epoch 8 - iter 267/894 - loss 0.00689475 - time (sec): 14.13 - samples/sec: 1845.24 - lr: 0.000015 - momentum: 0.000000
|
184 |
+
2023-10-13 14:14:26,650 epoch 8 - iter 356/894 - loss 0.00651321 - time (sec): 18.59 - samples/sec: 1906.91 - lr: 0.000014 - momentum: 0.000000
|
185 |
+
2023-10-13 14:14:30,820 epoch 8 - iter 445/894 - loss 0.00846668 - time (sec): 22.76 - samples/sec: 1928.85 - lr: 0.000014 - momentum: 0.000000
|
186 |
+
2023-10-13 14:14:35,003 epoch 8 - iter 534/894 - loss 0.00904011 - time (sec): 26.95 - samples/sec: 1942.81 - lr: 0.000013 - momentum: 0.000000
|
187 |
+
2023-10-13 14:14:39,112 epoch 8 - iter 623/894 - loss 0.00884653 - time (sec): 31.06 - samples/sec: 1959.93 - lr: 0.000013 - momentum: 0.000000
|
188 |
+
2023-10-13 14:14:43,204 epoch 8 - iter 712/894 - loss 0.00918400 - time (sec): 35.15 - samples/sec: 1971.65 - lr: 0.000012 - momentum: 0.000000
|
189 |
+
2023-10-13 14:14:47,448 epoch 8 - iter 801/894 - loss 0.00950962 - time (sec): 39.39 - samples/sec: 1969.14 - lr: 0.000012 - momentum: 0.000000
|
190 |
+
2023-10-13 14:14:51,628 epoch 8 - iter 890/894 - loss 0.00947519 - time (sec): 43.57 - samples/sec: 1978.33 - lr: 0.000011 - momentum: 0.000000
|
191 |
+
2023-10-13 14:14:51,804 ----------------------------------------------------------------------------------------------------
|
192 |
+
2023-10-13 14:14:51,804 EPOCH 8 done: loss 0.0094 - lr: 0.000011
|
193 |
+
2023-10-13 14:15:00,785 DEV : loss 0.2568976879119873 - f1-score (micro avg) 0.7658
|
194 |
+
2023-10-13 14:15:00,815 saving best model
|
195 |
+
2023-10-13 14:15:01,340 ----------------------------------------------------------------------------------------------------
|
196 |
+
2023-10-13 14:15:05,956 epoch 9 - iter 89/894 - loss 0.00391659 - time (sec): 4.61 - samples/sec: 1787.79 - lr: 0.000011 - momentum: 0.000000
|
197 |
+
2023-10-13 14:15:10,412 epoch 9 - iter 178/894 - loss 0.00453941 - time (sec): 9.07 - samples/sec: 1958.05 - lr: 0.000010 - momentum: 0.000000
|
198 |
+
2023-10-13 14:15:14,661 epoch 9 - iter 267/894 - loss 0.00419557 - time (sec): 13.32 - samples/sec: 2014.76 - lr: 0.000009 - momentum: 0.000000
|
199 |
+
2023-10-13 14:15:18,739 epoch 9 - iter 356/894 - loss 0.00626206 - time (sec): 17.40 - samples/sec: 2030.77 - lr: 0.000009 - momentum: 0.000000
|
200 |
+
2023-10-13 14:15:22,908 epoch 9 - iter 445/894 - loss 0.00766227 - time (sec): 21.57 - samples/sec: 2017.53 - lr: 0.000008 - momentum: 0.000000
|
201 |
+
2023-10-13 14:15:26,928 epoch 9 - iter 534/894 - loss 0.00757263 - time (sec): 25.59 - samples/sec: 2035.91 - lr: 0.000008 - momentum: 0.000000
|
202 |
+
2023-10-13 14:15:31,064 epoch 9 - iter 623/894 - loss 0.00774753 - time (sec): 29.72 - samples/sec: 2044.80 - lr: 0.000007 - momentum: 0.000000
|
203 |
+
2023-10-13 14:15:35,087 epoch 9 - iter 712/894 - loss 0.00696736 - time (sec): 33.74 - samples/sec: 2055.60 - lr: 0.000007 - momentum: 0.000000
|
204 |
+
2023-10-13 14:15:39,286 epoch 9 - iter 801/894 - loss 0.00720776 - time (sec): 37.94 - samples/sec: 2045.59 - lr: 0.000006 - momentum: 0.000000
|
205 |
+
2023-10-13 14:15:43,335 epoch 9 - iter 890/894 - loss 0.00695611 - time (sec): 41.99 - samples/sec: 2052.94 - lr: 0.000006 - momentum: 0.000000
|
206 |
+
2023-10-13 14:15:43,509 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-13 14:15:43,509 EPOCH 9 done: loss 0.0069 - lr: 0.000006
|
208 |
+
2023-10-13 14:15:52,300 DEV : loss 0.26707446575164795 - f1-score (micro avg) 0.7733
|
209 |
+
2023-10-13 14:15:52,332 saving best model
|
210 |
+
2023-10-13 14:15:52,842 ----------------------------------------------------------------------------------------------------
|
211 |
+
2023-10-13 14:15:56,987 epoch 10 - iter 89/894 - loss 0.01316612 - time (sec): 4.14 - samples/sec: 2068.39 - lr: 0.000005 - momentum: 0.000000
|
212 |
+
2023-10-13 14:16:01,198 epoch 10 - iter 178/894 - loss 0.00979750 - time (sec): 8.35 - samples/sec: 1970.51 - lr: 0.000004 - momentum: 0.000000
|
213 |
+
2023-10-13 14:16:05,313 epoch 10 - iter 267/894 - loss 0.00661329 - time (sec): 12.47 - samples/sec: 2005.21 - lr: 0.000004 - momentum: 0.000000
|
214 |
+
2023-10-13 14:16:09,316 epoch 10 - iter 356/894 - loss 0.00704547 - time (sec): 16.47 - samples/sec: 2011.59 - lr: 0.000003 - momentum: 0.000000
|
215 |
+
2023-10-13 14:16:13,661 epoch 10 - iter 445/894 - loss 0.00624802 - time (sec): 20.82 - samples/sec: 2058.36 - lr: 0.000003 - momentum: 0.000000
|
216 |
+
2023-10-13 14:16:18,017 epoch 10 - iter 534/894 - loss 0.00619476 - time (sec): 25.17 - samples/sec: 2071.72 - lr: 0.000002 - momentum: 0.000000
|
217 |
+
2023-10-13 14:16:22,076 epoch 10 - iter 623/894 - loss 0.00569995 - time (sec): 29.23 - samples/sec: 2070.04 - lr: 0.000002 - momentum: 0.000000
|
218 |
+
2023-10-13 14:16:26,128 epoch 10 - iter 712/894 - loss 0.00579249 - time (sec): 33.28 - samples/sec: 2059.38 - lr: 0.000001 - momentum: 0.000000
|
219 |
+
2023-10-13 14:16:30,235 epoch 10 - iter 801/894 - loss 0.00526208 - time (sec): 37.39 - samples/sec: 2083.28 - lr: 0.000001 - momentum: 0.000000
|
220 |
+
2023-10-13 14:16:34,265 epoch 10 - iter 890/894 - loss 0.00512287 - time (sec): 41.42 - samples/sec: 2080.80 - lr: 0.000000 - momentum: 0.000000
|
221 |
+
2023-10-13 14:16:34,441 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-10-13 14:16:34,441 EPOCH 10 done: loss 0.0051 - lr: 0.000000
|
223 |
+
2023-10-13 14:16:43,026 DEV : loss 0.2595662772655487 - f1-score (micro avg) 0.7736
|
224 |
+
2023-10-13 14:16:43,057 saving best model
|
225 |
+
2023-10-13 14:16:44,098 ----------------------------------------------------------------------------------------------------
|
226 |
+
2023-10-13 14:16:44,100 Loading model from best epoch ...
|
227 |
+
2023-10-13 14:16:45,623 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
|
228 |
+
2023-10-13 14:16:50,883
|
229 |
+
Results:
|
230 |
+
- F-score (micro) 0.7347
|
231 |
+
- F-score (macro) 0.6609
|
232 |
+
- Accuracy 0.5974
|
233 |
+
|
234 |
+
By class:
|
235 |
+
precision recall f1-score support
|
236 |
+
|
237 |
+
loc 0.8176 0.8423 0.8298 596
|
238 |
+
pers 0.6575 0.7147 0.6849 333
|
239 |
+
org 0.5225 0.4394 0.4774 132
|
240 |
+
prod 0.6522 0.4545 0.5357 66
|
241 |
+
time 0.7407 0.8163 0.7767 49
|
242 |
+
|
243 |
+
micro avg 0.7313 0.7381 0.7347 1176
|
244 |
+
macro avg 0.6781 0.6535 0.6609 1176
|
245 |
+
weighted avg 0.7266 0.7381 0.7305 1176
|
246 |
+
|
247 |
+
2023-10-13 14:16:50,883 ----------------------------------------------------------------------------------------------------
|