File size: 24,991 Bytes
d71a669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
2023-10-08 18:16:32,446 ----------------------------------------------------------------------------------------------------
2023-10-08 18:16:32,447 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): T5LayerNorm()
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-08 18:16:32,447 ----------------------------------------------------------------------------------------------------
2023-10-08 18:16:32,447 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-08 18:16:32,448 ----------------------------------------------------------------------------------------------------
2023-10-08 18:16:32,448 Train:  966 sentences
2023-10-08 18:16:32,448         (train_with_dev=False, train_with_test=False)
2023-10-08 18:16:32,448 ----------------------------------------------------------------------------------------------------
2023-10-08 18:16:32,448 Training Params:
2023-10-08 18:16:32,448  - learning_rate: "0.00015" 
2023-10-08 18:16:32,448  - mini_batch_size: "4"
2023-10-08 18:16:32,448  - max_epochs: "10"
2023-10-08 18:16:32,448  - shuffle: "True"
2023-10-08 18:16:32,448 ----------------------------------------------------------------------------------------------------
2023-10-08 18:16:32,448 Plugins:
2023-10-08 18:16:32,448  - TensorboardLogger
2023-10-08 18:16:32,448  - LinearScheduler | warmup_fraction: '0.1'
2023-10-08 18:16:32,448 ----------------------------------------------------------------------------------------------------
2023-10-08 18:16:32,448 Final evaluation on model from best epoch (best-model.pt)
2023-10-08 18:16:32,448  - metric: "('micro avg', 'f1-score')"
2023-10-08 18:16:32,448 ----------------------------------------------------------------------------------------------------
2023-10-08 18:16:32,448 Computation:
2023-10-08 18:16:32,449  - compute on device: cuda:0
2023-10-08 18:16:32,449  - embedding storage: none
2023-10-08 18:16:32,449 ----------------------------------------------------------------------------------------------------
2023-10-08 18:16:32,449 Model training base path: "hmbench-ajmc/fr-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-1"
2023-10-08 18:16:32,449 ----------------------------------------------------------------------------------------------------
2023-10-08 18:16:32,449 ----------------------------------------------------------------------------------------------------
2023-10-08 18:16:32,449 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-08 18:16:42,184 epoch 1 - iter 24/242 - loss 3.23269142 - time (sec): 9.73 - samples/sec: 224.89 - lr: 0.000014 - momentum: 0.000000
2023-10-08 18:16:51,473 epoch 1 - iter 48/242 - loss 3.22249485 - time (sec): 19.02 - samples/sec: 244.18 - lr: 0.000029 - momentum: 0.000000
2023-10-08 18:17:00,441 epoch 1 - iter 72/242 - loss 3.20551448 - time (sec): 27.99 - samples/sec: 247.62 - lr: 0.000044 - momentum: 0.000000
2023-10-08 18:17:09,710 epoch 1 - iter 96/242 - loss 3.15823056 - time (sec): 37.26 - samples/sec: 253.14 - lr: 0.000059 - momentum: 0.000000
2023-10-08 18:17:18,886 epoch 1 - iter 120/242 - loss 3.07644769 - time (sec): 46.44 - samples/sec: 253.57 - lr: 0.000074 - momentum: 0.000000
2023-10-08 18:17:28,777 epoch 1 - iter 144/242 - loss 2.97338064 - time (sec): 56.33 - samples/sec: 255.90 - lr: 0.000089 - momentum: 0.000000
2023-10-08 18:17:37,776 epoch 1 - iter 168/242 - loss 2.87431993 - time (sec): 65.33 - samples/sec: 256.24 - lr: 0.000104 - momentum: 0.000000
2023-10-08 18:17:46,696 epoch 1 - iter 192/242 - loss 2.76814205 - time (sec): 74.25 - samples/sec: 256.36 - lr: 0.000118 - momentum: 0.000000
2023-10-08 18:17:56,559 epoch 1 - iter 216/242 - loss 2.63563561 - time (sec): 84.11 - samples/sec: 258.43 - lr: 0.000133 - momentum: 0.000000
2023-10-08 18:18:06,722 epoch 1 - iter 240/242 - loss 2.49337003 - time (sec): 94.27 - samples/sec: 260.02 - lr: 0.000148 - momentum: 0.000000
2023-10-08 18:18:07,447 ----------------------------------------------------------------------------------------------------
2023-10-08 18:18:07,447 EPOCH 1 done: loss 2.4815 - lr: 0.000148
2023-10-08 18:18:13,344 DEV : loss 1.187881588935852 - f1-score (micro avg)  0.0
2023-10-08 18:18:13,350 ----------------------------------------------------------------------------------------------------
2023-10-08 18:18:22,466 epoch 2 - iter 24/242 - loss 1.16961126 - time (sec): 9.11 - samples/sec: 249.16 - lr: 0.000148 - momentum: 0.000000
2023-10-08 18:18:31,815 epoch 2 - iter 48/242 - loss 1.03643335 - time (sec): 18.46 - samples/sec: 252.66 - lr: 0.000147 - momentum: 0.000000
2023-10-08 18:18:41,103 epoch 2 - iter 72/242 - loss 0.94733732 - time (sec): 27.75 - samples/sec: 256.46 - lr: 0.000145 - momentum: 0.000000
2023-10-08 18:18:50,518 epoch 2 - iter 96/242 - loss 0.87122298 - time (sec): 37.17 - samples/sec: 259.14 - lr: 0.000143 - momentum: 0.000000
2023-10-08 18:18:59,786 epoch 2 - iter 120/242 - loss 0.81457811 - time (sec): 46.43 - samples/sec: 258.47 - lr: 0.000142 - momentum: 0.000000
2023-10-08 18:19:09,536 epoch 2 - iter 144/242 - loss 0.77131873 - time (sec): 56.18 - samples/sec: 261.82 - lr: 0.000140 - momentum: 0.000000
2023-10-08 18:19:19,642 epoch 2 - iter 168/242 - loss 0.72892369 - time (sec): 66.29 - samples/sec: 261.41 - lr: 0.000139 - momentum: 0.000000
2023-10-08 18:19:28,785 epoch 2 - iter 192/242 - loss 0.68941919 - time (sec): 75.43 - samples/sec: 261.16 - lr: 0.000137 - momentum: 0.000000
2023-10-08 18:19:37,777 epoch 2 - iter 216/242 - loss 0.65715679 - time (sec): 84.43 - samples/sec: 260.48 - lr: 0.000135 - momentum: 0.000000
2023-10-08 18:19:47,470 epoch 2 - iter 240/242 - loss 0.62460856 - time (sec): 94.12 - samples/sec: 261.61 - lr: 0.000134 - momentum: 0.000000
2023-10-08 18:19:48,012 ----------------------------------------------------------------------------------------------------
2023-10-08 18:19:48,012 EPOCH 2 done: loss 0.6235 - lr: 0.000134
2023-10-08 18:19:53,806 DEV : loss 0.3897227346897125 - f1-score (micro avg)  0.3731
2023-10-08 18:19:53,813 saving best model
2023-10-08 18:19:54,725 ----------------------------------------------------------------------------------------------------
2023-10-08 18:20:04,366 epoch 3 - iter 24/242 - loss 0.35697873 - time (sec): 9.64 - samples/sec: 268.39 - lr: 0.000132 - momentum: 0.000000
2023-10-08 18:20:13,604 epoch 3 - iter 48/242 - loss 0.37113707 - time (sec): 18.88 - samples/sec: 267.62 - lr: 0.000130 - momentum: 0.000000
2023-10-08 18:20:23,337 epoch 3 - iter 72/242 - loss 0.34367840 - time (sec): 28.61 - samples/sec: 270.64 - lr: 0.000128 - momentum: 0.000000
2023-10-08 18:20:32,526 epoch 3 - iter 96/242 - loss 0.32984894 - time (sec): 37.80 - samples/sec: 266.51 - lr: 0.000127 - momentum: 0.000000
2023-10-08 18:20:41,455 epoch 3 - iter 120/242 - loss 0.31221782 - time (sec): 46.73 - samples/sec: 264.59 - lr: 0.000125 - momentum: 0.000000
2023-10-08 18:20:50,329 epoch 3 - iter 144/242 - loss 0.30435470 - time (sec): 55.60 - samples/sec: 263.57 - lr: 0.000124 - momentum: 0.000000
2023-10-08 18:21:00,276 epoch 3 - iter 168/242 - loss 0.29962563 - time (sec): 65.55 - samples/sec: 263.91 - lr: 0.000122 - momentum: 0.000000
2023-10-08 18:21:09,953 epoch 3 - iter 192/242 - loss 0.29351352 - time (sec): 75.23 - samples/sec: 264.92 - lr: 0.000120 - momentum: 0.000000
2023-10-08 18:21:18,884 epoch 3 - iter 216/242 - loss 0.28484928 - time (sec): 84.16 - samples/sec: 263.64 - lr: 0.000119 - momentum: 0.000000
2023-10-08 18:21:28,210 epoch 3 - iter 240/242 - loss 0.27921957 - time (sec): 93.48 - samples/sec: 263.07 - lr: 0.000117 - momentum: 0.000000
2023-10-08 18:21:28,826 ----------------------------------------------------------------------------------------------------
2023-10-08 18:21:28,826 EPOCH 3 done: loss 0.2786 - lr: 0.000117
2023-10-08 18:21:34,635 DEV : loss 0.22860029339790344 - f1-score (micro avg)  0.5446
2023-10-08 18:21:34,641 saving best model
2023-10-08 18:21:39,854 ----------------------------------------------------------------------------------------------------
2023-10-08 18:21:48,411 epoch 4 - iter 24/242 - loss 0.23513209 - time (sec): 8.56 - samples/sec: 256.67 - lr: 0.000115 - momentum: 0.000000
2023-10-08 18:21:58,114 epoch 4 - iter 48/242 - loss 0.22118636 - time (sec): 18.26 - samples/sec: 265.13 - lr: 0.000113 - momentum: 0.000000
2023-10-08 18:22:07,595 epoch 4 - iter 72/242 - loss 0.20467054 - time (sec): 27.74 - samples/sec: 262.11 - lr: 0.000112 - momentum: 0.000000
2023-10-08 18:22:16,768 epoch 4 - iter 96/242 - loss 0.19305601 - time (sec): 36.91 - samples/sec: 262.29 - lr: 0.000110 - momentum: 0.000000
2023-10-08 18:22:25,785 epoch 4 - iter 120/242 - loss 0.19060223 - time (sec): 45.93 - samples/sec: 261.90 - lr: 0.000109 - momentum: 0.000000
2023-10-08 18:22:36,021 epoch 4 - iter 144/242 - loss 0.18708839 - time (sec): 56.17 - samples/sec: 263.75 - lr: 0.000107 - momentum: 0.000000
2023-10-08 18:22:45,696 epoch 4 - iter 168/242 - loss 0.17861271 - time (sec): 65.84 - samples/sec: 264.17 - lr: 0.000105 - momentum: 0.000000
2023-10-08 18:22:54,966 epoch 4 - iter 192/242 - loss 0.17748223 - time (sec): 75.11 - samples/sec: 262.29 - lr: 0.000104 - momentum: 0.000000
2023-10-08 18:23:04,486 epoch 4 - iter 216/242 - loss 0.17548225 - time (sec): 84.63 - samples/sec: 261.77 - lr: 0.000102 - momentum: 0.000000
2023-10-08 18:23:13,862 epoch 4 - iter 240/242 - loss 0.17101350 - time (sec): 94.01 - samples/sec: 261.05 - lr: 0.000100 - momentum: 0.000000
2023-10-08 18:23:14,560 ----------------------------------------------------------------------------------------------------
2023-10-08 18:23:14,561 EPOCH 4 done: loss 0.1710 - lr: 0.000100
2023-10-08 18:23:20,444 DEV : loss 0.15941345691680908 - f1-score (micro avg)  0.8212
2023-10-08 18:23:20,451 saving best model
2023-10-08 18:23:24,842 ----------------------------------------------------------------------------------------------------
2023-10-08 18:23:34,448 epoch 5 - iter 24/242 - loss 0.16486530 - time (sec): 9.61 - samples/sec: 263.61 - lr: 0.000098 - momentum: 0.000000
2023-10-08 18:23:43,910 epoch 5 - iter 48/242 - loss 0.13645891 - time (sec): 19.07 - samples/sec: 258.40 - lr: 0.000097 - momentum: 0.000000
2023-10-08 18:23:53,993 epoch 5 - iter 72/242 - loss 0.13013903 - time (sec): 29.15 - samples/sec: 264.42 - lr: 0.000095 - momentum: 0.000000
2023-10-08 18:24:04,037 epoch 5 - iter 96/242 - loss 0.12377710 - time (sec): 39.19 - samples/sec: 265.32 - lr: 0.000094 - momentum: 0.000000
2023-10-08 18:24:13,765 epoch 5 - iter 120/242 - loss 0.12205066 - time (sec): 48.92 - samples/sec: 262.72 - lr: 0.000092 - momentum: 0.000000
2023-10-08 18:24:22,979 epoch 5 - iter 144/242 - loss 0.12395128 - time (sec): 58.14 - samples/sec: 260.01 - lr: 0.000090 - momentum: 0.000000
2023-10-08 18:24:32,801 epoch 5 - iter 168/242 - loss 0.11820058 - time (sec): 67.96 - samples/sec: 259.84 - lr: 0.000089 - momentum: 0.000000
2023-10-08 18:24:41,768 epoch 5 - iter 192/242 - loss 0.11799339 - time (sec): 76.92 - samples/sec: 257.75 - lr: 0.000087 - momentum: 0.000000
2023-10-08 18:24:51,316 epoch 5 - iter 216/242 - loss 0.11722304 - time (sec): 86.47 - samples/sec: 256.40 - lr: 0.000085 - momentum: 0.000000
2023-10-08 18:25:00,897 epoch 5 - iter 240/242 - loss 0.11333769 - time (sec): 96.05 - samples/sec: 255.45 - lr: 0.000084 - momentum: 0.000000
2023-10-08 18:25:01,673 ----------------------------------------------------------------------------------------------------
2023-10-08 18:25:01,673 EPOCH 5 done: loss 0.1129 - lr: 0.000084
2023-10-08 18:25:07,915 DEV : loss 0.1479427069425583 - f1-score (micro avg)  0.8097
2023-10-08 18:25:07,921 ----------------------------------------------------------------------------------------------------
2023-10-08 18:25:17,380 epoch 6 - iter 24/242 - loss 0.09476938 - time (sec): 9.46 - samples/sec: 237.69 - lr: 0.000082 - momentum: 0.000000
2023-10-08 18:25:27,454 epoch 6 - iter 48/242 - loss 0.08965422 - time (sec): 19.53 - samples/sec: 245.46 - lr: 0.000080 - momentum: 0.000000
2023-10-08 18:25:37,034 epoch 6 - iter 72/242 - loss 0.08409169 - time (sec): 29.11 - samples/sec: 243.79 - lr: 0.000079 - momentum: 0.000000
2023-10-08 18:25:47,244 epoch 6 - iter 96/242 - loss 0.08653234 - time (sec): 39.32 - samples/sec: 244.98 - lr: 0.000077 - momentum: 0.000000
2023-10-08 18:25:57,462 epoch 6 - iter 120/242 - loss 0.08433397 - time (sec): 49.54 - samples/sec: 245.74 - lr: 0.000075 - momentum: 0.000000
2023-10-08 18:26:08,047 epoch 6 - iter 144/242 - loss 0.08364166 - time (sec): 60.12 - samples/sec: 247.54 - lr: 0.000074 - momentum: 0.000000
2023-10-08 18:26:18,163 epoch 6 - iter 168/242 - loss 0.08837454 - time (sec): 70.24 - samples/sec: 248.70 - lr: 0.000072 - momentum: 0.000000
2023-10-08 18:26:27,960 epoch 6 - iter 192/242 - loss 0.08797324 - time (sec): 80.04 - samples/sec: 246.32 - lr: 0.000070 - momentum: 0.000000
2023-10-08 18:26:37,514 epoch 6 - iter 216/242 - loss 0.08549075 - time (sec): 89.59 - samples/sec: 245.10 - lr: 0.000069 - momentum: 0.000000
2023-10-08 18:26:48,162 epoch 6 - iter 240/242 - loss 0.08456891 - time (sec): 100.24 - samples/sec: 244.47 - lr: 0.000067 - momentum: 0.000000
2023-10-08 18:26:49,071 ----------------------------------------------------------------------------------------------------
2023-10-08 18:26:49,072 EPOCH 6 done: loss 0.0846 - lr: 0.000067
2023-10-08 18:26:55,670 DEV : loss 0.13671354949474335 - f1-score (micro avg)  0.824
2023-10-08 18:26:55,676 saving best model
2023-10-08 18:27:00,080 ----------------------------------------------------------------------------------------------------
2023-10-08 18:27:08,919 epoch 7 - iter 24/242 - loss 0.04626953 - time (sec): 8.84 - samples/sec: 221.55 - lr: 0.000065 - momentum: 0.000000
2023-10-08 18:27:19,128 epoch 7 - iter 48/242 - loss 0.06148305 - time (sec): 19.05 - samples/sec: 239.21 - lr: 0.000064 - momentum: 0.000000
2023-10-08 18:27:29,148 epoch 7 - iter 72/242 - loss 0.06595940 - time (sec): 29.07 - samples/sec: 240.18 - lr: 0.000062 - momentum: 0.000000
2023-10-08 18:27:39,577 epoch 7 - iter 96/242 - loss 0.06887665 - time (sec): 39.50 - samples/sec: 242.89 - lr: 0.000060 - momentum: 0.000000
2023-10-08 18:27:49,708 epoch 7 - iter 120/242 - loss 0.06674868 - time (sec): 49.63 - samples/sec: 243.18 - lr: 0.000059 - momentum: 0.000000
2023-10-08 18:27:58,945 epoch 7 - iter 144/242 - loss 0.06165700 - time (sec): 58.86 - samples/sec: 240.61 - lr: 0.000057 - momentum: 0.000000
2023-10-08 18:28:09,127 epoch 7 - iter 168/242 - loss 0.06476297 - time (sec): 69.05 - samples/sec: 240.87 - lr: 0.000055 - momentum: 0.000000
2023-10-08 18:28:19,497 epoch 7 - iter 192/242 - loss 0.06659121 - time (sec): 79.41 - samples/sec: 241.57 - lr: 0.000054 - momentum: 0.000000
2023-10-08 18:28:30,481 epoch 7 - iter 216/242 - loss 0.06620009 - time (sec): 90.40 - samples/sec: 242.38 - lr: 0.000052 - momentum: 0.000000
2023-10-08 18:28:41,271 epoch 7 - iter 240/242 - loss 0.06433525 - time (sec): 101.19 - samples/sec: 242.96 - lr: 0.000050 - momentum: 0.000000
2023-10-08 18:28:41,908 ----------------------------------------------------------------------------------------------------
2023-10-08 18:28:41,908 EPOCH 7 done: loss 0.0641 - lr: 0.000050
2023-10-08 18:28:48,483 DEV : loss 0.1378345787525177 - f1-score (micro avg)  0.8149
2023-10-08 18:28:48,489 ----------------------------------------------------------------------------------------------------
2023-10-08 18:28:57,955 epoch 8 - iter 24/242 - loss 0.05161041 - time (sec): 9.46 - samples/sec: 222.09 - lr: 0.000049 - momentum: 0.000000
2023-10-08 18:29:08,141 epoch 8 - iter 48/242 - loss 0.05952830 - time (sec): 19.65 - samples/sec: 236.58 - lr: 0.000047 - momentum: 0.000000
2023-10-08 18:29:18,619 epoch 8 - iter 72/242 - loss 0.05676119 - time (sec): 30.13 - samples/sec: 243.02 - lr: 0.000045 - momentum: 0.000000
2023-10-08 18:29:28,729 epoch 8 - iter 96/242 - loss 0.04846381 - time (sec): 40.24 - samples/sec: 243.03 - lr: 0.000044 - momentum: 0.000000
2023-10-08 18:29:39,172 epoch 8 - iter 120/242 - loss 0.04918867 - time (sec): 50.68 - samples/sec: 243.12 - lr: 0.000042 - momentum: 0.000000
2023-10-08 18:29:49,395 epoch 8 - iter 144/242 - loss 0.04964492 - time (sec): 60.91 - samples/sec: 244.08 - lr: 0.000040 - momentum: 0.000000
2023-10-08 18:29:59,859 epoch 8 - iter 168/242 - loss 0.05311315 - time (sec): 71.37 - samples/sec: 245.18 - lr: 0.000039 - momentum: 0.000000
2023-10-08 18:30:10,010 epoch 8 - iter 192/242 - loss 0.05009814 - time (sec): 81.52 - samples/sec: 244.73 - lr: 0.000037 - momentum: 0.000000
2023-10-08 18:30:19,787 epoch 8 - iter 216/242 - loss 0.04810545 - time (sec): 91.30 - samples/sec: 243.95 - lr: 0.000035 - momentum: 0.000000
2023-10-08 18:30:29,559 epoch 8 - iter 240/242 - loss 0.04878436 - time (sec): 101.07 - samples/sec: 243.65 - lr: 0.000034 - momentum: 0.000000
2023-10-08 18:30:30,089 ----------------------------------------------------------------------------------------------------
2023-10-08 18:30:30,089 EPOCH 8 done: loss 0.0487 - lr: 0.000034
2023-10-08 18:30:36,560 DEV : loss 0.14124426245689392 - f1-score (micro avg)  0.8231
2023-10-08 18:30:36,566 ----------------------------------------------------------------------------------------------------
2023-10-08 18:30:46,085 epoch 9 - iter 24/242 - loss 0.05078836 - time (sec): 9.52 - samples/sec: 234.52 - lr: 0.000032 - momentum: 0.000000
2023-10-08 18:30:55,435 epoch 9 - iter 48/242 - loss 0.04517817 - time (sec): 18.87 - samples/sec: 233.10 - lr: 0.000030 - momentum: 0.000000
2023-10-08 18:31:05,694 epoch 9 - iter 72/242 - loss 0.03891168 - time (sec): 29.13 - samples/sec: 237.11 - lr: 0.000029 - momentum: 0.000000
2023-10-08 18:31:15,788 epoch 9 - iter 96/242 - loss 0.04475568 - time (sec): 39.22 - samples/sec: 240.97 - lr: 0.000027 - momentum: 0.000000
2023-10-08 18:31:26,418 epoch 9 - iter 120/242 - loss 0.04568425 - time (sec): 49.85 - samples/sec: 243.13 - lr: 0.000025 - momentum: 0.000000
2023-10-08 18:31:37,134 epoch 9 - iter 144/242 - loss 0.04606648 - time (sec): 60.57 - samples/sec: 242.53 - lr: 0.000024 - momentum: 0.000000
2023-10-08 18:31:47,375 epoch 9 - iter 168/242 - loss 0.04397738 - time (sec): 70.81 - samples/sec: 242.77 - lr: 0.000022 - momentum: 0.000000
2023-10-08 18:31:57,299 epoch 9 - iter 192/242 - loss 0.04245585 - time (sec): 80.73 - samples/sec: 242.51 - lr: 0.000020 - momentum: 0.000000
2023-10-08 18:32:07,349 epoch 9 - iter 216/242 - loss 0.04348688 - time (sec): 90.78 - samples/sec: 242.62 - lr: 0.000019 - momentum: 0.000000
2023-10-08 18:32:17,558 epoch 9 - iter 240/242 - loss 0.04244140 - time (sec): 100.99 - samples/sec: 243.14 - lr: 0.000017 - momentum: 0.000000
2023-10-08 18:32:18,254 ----------------------------------------------------------------------------------------------------
2023-10-08 18:32:18,255 EPOCH 9 done: loss 0.0426 - lr: 0.000017
2023-10-08 18:32:24,676 DEV : loss 0.14517952501773834 - f1-score (micro avg)  0.8109
2023-10-08 18:32:24,682 ----------------------------------------------------------------------------------------------------
2023-10-08 18:32:34,783 epoch 10 - iter 24/242 - loss 0.03127148 - time (sec): 10.10 - samples/sec: 242.77 - lr: 0.000015 - momentum: 0.000000
2023-10-08 18:32:45,274 epoch 10 - iter 48/242 - loss 0.02653376 - time (sec): 20.59 - samples/sec: 246.08 - lr: 0.000014 - momentum: 0.000000
2023-10-08 18:32:55,388 epoch 10 - iter 72/242 - loss 0.02893367 - time (sec): 30.70 - samples/sec: 245.21 - lr: 0.000012 - momentum: 0.000000
2023-10-08 18:33:05,766 epoch 10 - iter 96/242 - loss 0.03364083 - time (sec): 41.08 - samples/sec: 245.84 - lr: 0.000010 - momentum: 0.000000
2023-10-08 18:33:15,066 epoch 10 - iter 120/242 - loss 0.03636518 - time (sec): 50.38 - samples/sec: 242.54 - lr: 0.000009 - momentum: 0.000000
2023-10-08 18:33:24,798 epoch 10 - iter 144/242 - loss 0.03644534 - time (sec): 60.11 - samples/sec: 241.39 - lr: 0.000007 - momentum: 0.000000
2023-10-08 18:33:34,831 epoch 10 - iter 168/242 - loss 0.03646037 - time (sec): 70.15 - samples/sec: 241.73 - lr: 0.000005 - momentum: 0.000000
2023-10-08 18:33:45,003 epoch 10 - iter 192/242 - loss 0.03701845 - time (sec): 80.32 - samples/sec: 242.52 - lr: 0.000004 - momentum: 0.000000
2023-10-08 18:33:55,174 epoch 10 - iter 216/242 - loss 0.03595125 - time (sec): 90.49 - samples/sec: 242.81 - lr: 0.000002 - momentum: 0.000000
2023-10-08 18:34:05,446 epoch 10 - iter 240/242 - loss 0.03766310 - time (sec): 100.76 - samples/sec: 243.91 - lr: 0.000000 - momentum: 0.000000
2023-10-08 18:34:06,228 ----------------------------------------------------------------------------------------------------
2023-10-08 18:34:06,228 EPOCH 10 done: loss 0.0379 - lr: 0.000000
2023-10-08 18:34:12,689 DEV : loss 0.1463211625814438 - f1-score (micro avg)  0.8225
2023-10-08 18:34:13,565 ----------------------------------------------------------------------------------------------------
2023-10-08 18:34:13,566 Loading model from best epoch ...
2023-10-08 18:34:19,025 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-08 18:34:25,383 
Results:
- F-score (micro) 0.779
- F-score (macro) 0.4674
- Accuracy 0.6737

By class:
              precision    recall  f1-score   support

        pers     0.8188    0.8129    0.8159       139
       scope     0.7931    0.8915    0.8394       129
        work     0.6162    0.7625    0.6816        80
         loc     0.0000    0.0000    0.0000         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7565    0.8028    0.7790       360
   macro avg     0.4456    0.4934    0.4674       360
weighted avg     0.7373    0.8028    0.7673       360

2023-10-08 18:34:25,383 ----------------------------------------------------------------------------------------------------