File size: 23,908 Bytes
2899c1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
2023-10-13 10:47:53,859 ----------------------------------------------------------------------------------------------------
2023-10-13 10:47:53,860 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 10:47:53,860 ----------------------------------------------------------------------------------------------------
2023-10-13 10:47:53,860 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-13 10:47:53,860 ----------------------------------------------------------------------------------------------------
2023-10-13 10:47:53,860 Train:  966 sentences
2023-10-13 10:47:53,860         (train_with_dev=False, train_with_test=False)
2023-10-13 10:47:53,860 ----------------------------------------------------------------------------------------------------
2023-10-13 10:47:53,860 Training Params:
2023-10-13 10:47:53,860  - learning_rate: "3e-05" 
2023-10-13 10:47:53,860  - mini_batch_size: "4"
2023-10-13 10:47:53,861  - max_epochs: "10"
2023-10-13 10:47:53,861  - shuffle: "True"
2023-10-13 10:47:53,861 ----------------------------------------------------------------------------------------------------
2023-10-13 10:47:53,861 Plugins:
2023-10-13 10:47:53,861  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 10:47:53,861 ----------------------------------------------------------------------------------------------------
2023-10-13 10:47:53,861 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 10:47:53,861  - metric: "('micro avg', 'f1-score')"
2023-10-13 10:47:53,861 ----------------------------------------------------------------------------------------------------
2023-10-13 10:47:53,861 Computation:
2023-10-13 10:47:53,861  - compute on device: cuda:0
2023-10-13 10:47:53,861  - embedding storage: none
2023-10-13 10:47:53,861 ----------------------------------------------------------------------------------------------------
2023-10-13 10:47:53,861 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-13 10:47:53,861 ----------------------------------------------------------------------------------------------------
2023-10-13 10:47:53,861 ----------------------------------------------------------------------------------------------------
2023-10-13 10:47:55,015 epoch 1 - iter 24/242 - loss 3.13003262 - time (sec): 1.15 - samples/sec: 2161.80 - lr: 0.000003 - momentum: 0.000000
2023-10-13 10:47:56,148 epoch 1 - iter 48/242 - loss 2.75856781 - time (sec): 2.29 - samples/sec: 2180.16 - lr: 0.000006 - momentum: 0.000000
2023-10-13 10:47:57,299 epoch 1 - iter 72/242 - loss 2.19092998 - time (sec): 3.44 - samples/sec: 2154.66 - lr: 0.000009 - momentum: 0.000000
2023-10-13 10:47:58,447 epoch 1 - iter 96/242 - loss 1.77854119 - time (sec): 4.59 - samples/sec: 2200.86 - lr: 0.000012 - momentum: 0.000000
2023-10-13 10:47:59,545 epoch 1 - iter 120/242 - loss 1.55395191 - time (sec): 5.68 - samples/sec: 2176.25 - lr: 0.000015 - momentum: 0.000000
2023-10-13 10:48:00,641 epoch 1 - iter 144/242 - loss 1.38979327 - time (sec): 6.78 - samples/sec: 2156.02 - lr: 0.000018 - momentum: 0.000000
2023-10-13 10:48:01,874 epoch 1 - iter 168/242 - loss 1.25407378 - time (sec): 8.01 - samples/sec: 2150.68 - lr: 0.000021 - momentum: 0.000000
2023-10-13 10:48:03,164 epoch 1 - iter 192/242 - loss 1.13701640 - time (sec): 9.30 - samples/sec: 2116.67 - lr: 0.000024 - momentum: 0.000000
2023-10-13 10:48:04,450 epoch 1 - iter 216/242 - loss 1.04657703 - time (sec): 10.59 - samples/sec: 2074.49 - lr: 0.000027 - momentum: 0.000000
2023-10-13 10:48:05,698 epoch 1 - iter 240/242 - loss 0.96086965 - time (sec): 11.84 - samples/sec: 2079.63 - lr: 0.000030 - momentum: 0.000000
2023-10-13 10:48:05,794 ----------------------------------------------------------------------------------------------------
2023-10-13 10:48:05,794 EPOCH 1 done: loss 0.9579 - lr: 0.000030
2023-10-13 10:48:06,820 DEV : loss 0.2311297208070755 - f1-score (micro avg)  0.5526
2023-10-13 10:48:06,827 saving best model
2023-10-13 10:48:07,175 ----------------------------------------------------------------------------------------------------
2023-10-13 10:48:08,412 epoch 2 - iter 24/242 - loss 0.19252288 - time (sec): 1.24 - samples/sec: 1890.40 - lr: 0.000030 - momentum: 0.000000
2023-10-13 10:48:09,585 epoch 2 - iter 48/242 - loss 0.19820910 - time (sec): 2.41 - samples/sec: 2130.51 - lr: 0.000029 - momentum: 0.000000
2023-10-13 10:48:10,665 epoch 2 - iter 72/242 - loss 0.22613094 - time (sec): 3.49 - samples/sec: 2173.82 - lr: 0.000029 - momentum: 0.000000
2023-10-13 10:48:11,757 epoch 2 - iter 96/242 - loss 0.21088375 - time (sec): 4.58 - samples/sec: 2193.77 - lr: 0.000029 - momentum: 0.000000
2023-10-13 10:48:12,828 epoch 2 - iter 120/242 - loss 0.20564494 - time (sec): 5.65 - samples/sec: 2189.72 - lr: 0.000028 - momentum: 0.000000
2023-10-13 10:48:13,904 epoch 2 - iter 144/242 - loss 0.19855435 - time (sec): 6.73 - samples/sec: 2231.35 - lr: 0.000028 - momentum: 0.000000
2023-10-13 10:48:14,998 epoch 2 - iter 168/242 - loss 0.19107056 - time (sec): 7.82 - samples/sec: 2248.92 - lr: 0.000028 - momentum: 0.000000
2023-10-13 10:48:16,041 epoch 2 - iter 192/242 - loss 0.19275419 - time (sec): 8.86 - samples/sec: 2224.91 - lr: 0.000027 - momentum: 0.000000
2023-10-13 10:48:17,056 epoch 2 - iter 216/242 - loss 0.18972065 - time (sec): 9.88 - samples/sec: 2227.16 - lr: 0.000027 - momentum: 0.000000
2023-10-13 10:48:18,077 epoch 2 - iter 240/242 - loss 0.18183087 - time (sec): 10.90 - samples/sec: 2253.42 - lr: 0.000027 - momentum: 0.000000
2023-10-13 10:48:18,160 ----------------------------------------------------------------------------------------------------
2023-10-13 10:48:18,160 EPOCH 2 done: loss 0.1813 - lr: 0.000027
2023-10-13 10:48:18,923 DEV : loss 0.1384759545326233 - f1-score (micro avg)  0.797
2023-10-13 10:48:18,927 saving best model
2023-10-13 10:48:19,386 ----------------------------------------------------------------------------------------------------
2023-10-13 10:48:20,511 epoch 3 - iter 24/242 - loss 0.11716937 - time (sec): 1.12 - samples/sec: 2225.32 - lr: 0.000026 - momentum: 0.000000
2023-10-13 10:48:21,596 epoch 3 - iter 48/242 - loss 0.10872166 - time (sec): 2.21 - samples/sec: 2158.68 - lr: 0.000026 - momentum: 0.000000
2023-10-13 10:48:22,672 epoch 3 - iter 72/242 - loss 0.10620498 - time (sec): 3.28 - samples/sec: 2178.29 - lr: 0.000026 - momentum: 0.000000
2023-10-13 10:48:23,739 epoch 3 - iter 96/242 - loss 0.11615336 - time (sec): 4.35 - samples/sec: 2193.15 - lr: 0.000025 - momentum: 0.000000
2023-10-13 10:48:24,794 epoch 3 - iter 120/242 - loss 0.11830967 - time (sec): 5.41 - samples/sec: 2205.38 - lr: 0.000025 - momentum: 0.000000
2023-10-13 10:48:25,875 epoch 3 - iter 144/242 - loss 0.11441029 - time (sec): 6.49 - samples/sec: 2235.60 - lr: 0.000025 - momentum: 0.000000
2023-10-13 10:48:26,948 epoch 3 - iter 168/242 - loss 0.10605450 - time (sec): 7.56 - samples/sec: 2240.85 - lr: 0.000024 - momentum: 0.000000
2023-10-13 10:48:28,024 epoch 3 - iter 192/242 - loss 0.10357313 - time (sec): 8.64 - samples/sec: 2269.02 - lr: 0.000024 - momentum: 0.000000
2023-10-13 10:48:29,109 epoch 3 - iter 216/242 - loss 0.10387747 - time (sec): 9.72 - samples/sec: 2239.64 - lr: 0.000024 - momentum: 0.000000
2023-10-13 10:48:30,228 epoch 3 - iter 240/242 - loss 0.10206518 - time (sec): 10.84 - samples/sec: 2270.44 - lr: 0.000023 - momentum: 0.000000
2023-10-13 10:48:30,312 ----------------------------------------------------------------------------------------------------
2023-10-13 10:48:30,312 EPOCH 3 done: loss 0.1020 - lr: 0.000023
2023-10-13 10:48:31,102 DEV : loss 0.13693803548812866 - f1-score (micro avg)  0.8128
2023-10-13 10:48:31,107 saving best model
2023-10-13 10:48:31,579 ----------------------------------------------------------------------------------------------------
2023-10-13 10:48:32,692 epoch 4 - iter 24/242 - loss 0.05483466 - time (sec): 1.11 - samples/sec: 2277.02 - lr: 0.000023 - momentum: 0.000000
2023-10-13 10:48:33,787 epoch 4 - iter 48/242 - loss 0.06636085 - time (sec): 2.20 - samples/sec: 2195.33 - lr: 0.000023 - momentum: 0.000000
2023-10-13 10:48:34,899 epoch 4 - iter 72/242 - loss 0.05503188 - time (sec): 3.32 - samples/sec: 2227.16 - lr: 0.000022 - momentum: 0.000000
2023-10-13 10:48:35,985 epoch 4 - iter 96/242 - loss 0.06042093 - time (sec): 4.40 - samples/sec: 2291.90 - lr: 0.000022 - momentum: 0.000000
2023-10-13 10:48:37,093 epoch 4 - iter 120/242 - loss 0.07036762 - time (sec): 5.51 - samples/sec: 2266.87 - lr: 0.000022 - momentum: 0.000000
2023-10-13 10:48:38,172 epoch 4 - iter 144/242 - loss 0.06852479 - time (sec): 6.59 - samples/sec: 2218.64 - lr: 0.000021 - momentum: 0.000000
2023-10-13 10:48:39,278 epoch 4 - iter 168/242 - loss 0.07130847 - time (sec): 7.69 - samples/sec: 2209.89 - lr: 0.000021 - momentum: 0.000000
2023-10-13 10:48:40,350 epoch 4 - iter 192/242 - loss 0.07430387 - time (sec): 8.77 - samples/sec: 2230.60 - lr: 0.000021 - momentum: 0.000000
2023-10-13 10:48:41,411 epoch 4 - iter 216/242 - loss 0.07667453 - time (sec): 9.83 - samples/sec: 2252.68 - lr: 0.000020 - momentum: 0.000000
2023-10-13 10:48:42,477 epoch 4 - iter 240/242 - loss 0.07606467 - time (sec): 10.89 - samples/sec: 2265.12 - lr: 0.000020 - momentum: 0.000000
2023-10-13 10:48:42,561 ----------------------------------------------------------------------------------------------------
2023-10-13 10:48:42,561 EPOCH 4 done: loss 0.0759 - lr: 0.000020
2023-10-13 10:48:43,344 DEV : loss 0.14181385934352875 - f1-score (micro avg)  0.8294
2023-10-13 10:48:43,349 saving best model
2023-10-13 10:48:43,819 ----------------------------------------------------------------------------------------------------
2023-10-13 10:48:45,012 epoch 5 - iter 24/242 - loss 0.04479677 - time (sec): 1.18 - samples/sec: 2163.10 - lr: 0.000020 - momentum: 0.000000
2023-10-13 10:48:46,151 epoch 5 - iter 48/242 - loss 0.04692686 - time (sec): 2.32 - samples/sec: 2227.84 - lr: 0.000019 - momentum: 0.000000
2023-10-13 10:48:47,280 epoch 5 - iter 72/242 - loss 0.05314195 - time (sec): 3.45 - samples/sec: 2217.21 - lr: 0.000019 - momentum: 0.000000
2023-10-13 10:48:48,436 epoch 5 - iter 96/242 - loss 0.05034553 - time (sec): 4.61 - samples/sec: 2169.73 - lr: 0.000019 - momentum: 0.000000
2023-10-13 10:48:49,503 epoch 5 - iter 120/242 - loss 0.05228931 - time (sec): 5.67 - samples/sec: 2198.25 - lr: 0.000018 - momentum: 0.000000
2023-10-13 10:48:50,569 epoch 5 - iter 144/242 - loss 0.05391865 - time (sec): 6.74 - samples/sec: 2187.02 - lr: 0.000018 - momentum: 0.000000
2023-10-13 10:48:51,665 epoch 5 - iter 168/242 - loss 0.05744337 - time (sec): 7.84 - samples/sec: 2170.23 - lr: 0.000018 - momentum: 0.000000
2023-10-13 10:48:52,753 epoch 5 - iter 192/242 - loss 0.05935951 - time (sec): 8.92 - samples/sec: 2181.24 - lr: 0.000017 - momentum: 0.000000
2023-10-13 10:48:53,838 epoch 5 - iter 216/242 - loss 0.05699843 - time (sec): 10.01 - samples/sec: 2211.94 - lr: 0.000017 - momentum: 0.000000
2023-10-13 10:48:54,907 epoch 5 - iter 240/242 - loss 0.05727682 - time (sec): 11.08 - samples/sec: 2222.44 - lr: 0.000017 - momentum: 0.000000
2023-10-13 10:48:54,993 ----------------------------------------------------------------------------------------------------
2023-10-13 10:48:54,993 EPOCH 5 done: loss 0.0579 - lr: 0.000017
2023-10-13 10:48:55,769 DEV : loss 0.14726245403289795 - f1-score (micro avg)  0.8434
2023-10-13 10:48:55,774 saving best model
2023-10-13 10:48:56,239 ----------------------------------------------------------------------------------------------------
2023-10-13 10:48:57,364 epoch 6 - iter 24/242 - loss 0.05146366 - time (sec): 1.12 - samples/sec: 2100.14 - lr: 0.000016 - momentum: 0.000000
2023-10-13 10:48:58,596 epoch 6 - iter 48/242 - loss 0.05125553 - time (sec): 2.35 - samples/sec: 2083.72 - lr: 0.000016 - momentum: 0.000000
2023-10-13 10:48:59,752 epoch 6 - iter 72/242 - loss 0.05035674 - time (sec): 3.51 - samples/sec: 1990.82 - lr: 0.000016 - momentum: 0.000000
2023-10-13 10:49:00,948 epoch 6 - iter 96/242 - loss 0.04704035 - time (sec): 4.71 - samples/sec: 2095.76 - lr: 0.000015 - momentum: 0.000000
2023-10-13 10:49:02,045 epoch 6 - iter 120/242 - loss 0.04175777 - time (sec): 5.80 - samples/sec: 2132.85 - lr: 0.000015 - momentum: 0.000000
2023-10-13 10:49:03,120 epoch 6 - iter 144/242 - loss 0.04166679 - time (sec): 6.88 - samples/sec: 2145.67 - lr: 0.000015 - momentum: 0.000000
2023-10-13 10:49:04,186 epoch 6 - iter 168/242 - loss 0.03841489 - time (sec): 7.94 - samples/sec: 2162.85 - lr: 0.000014 - momentum: 0.000000
2023-10-13 10:49:05,276 epoch 6 - iter 192/242 - loss 0.03596465 - time (sec): 9.03 - samples/sec: 2189.29 - lr: 0.000014 - momentum: 0.000000
2023-10-13 10:49:06,351 epoch 6 - iter 216/242 - loss 0.04193606 - time (sec): 10.11 - samples/sec: 2201.00 - lr: 0.000014 - momentum: 0.000000
2023-10-13 10:49:07,421 epoch 6 - iter 240/242 - loss 0.04253577 - time (sec): 11.18 - samples/sec: 2198.84 - lr: 0.000013 - momentum: 0.000000
2023-10-13 10:49:07,509 ----------------------------------------------------------------------------------------------------
2023-10-13 10:49:07,509 EPOCH 6 done: loss 0.0429 - lr: 0.000013
2023-10-13 10:49:08,299 DEV : loss 0.17159917950630188 - f1-score (micro avg)  0.8356
2023-10-13 10:49:08,306 ----------------------------------------------------------------------------------------------------
2023-10-13 10:49:09,399 epoch 7 - iter 24/242 - loss 0.03111648 - time (sec): 1.09 - samples/sec: 2193.15 - lr: 0.000013 - momentum: 0.000000
2023-10-13 10:49:10,493 epoch 7 - iter 48/242 - loss 0.02717241 - time (sec): 2.19 - samples/sec: 2215.80 - lr: 0.000013 - momentum: 0.000000
2023-10-13 10:49:11,571 epoch 7 - iter 72/242 - loss 0.02752756 - time (sec): 3.26 - samples/sec: 2329.21 - lr: 0.000012 - momentum: 0.000000
2023-10-13 10:49:12,685 epoch 7 - iter 96/242 - loss 0.03236364 - time (sec): 4.38 - samples/sec: 2313.01 - lr: 0.000012 - momentum: 0.000000
2023-10-13 10:49:13,767 epoch 7 - iter 120/242 - loss 0.02918724 - time (sec): 5.46 - samples/sec: 2301.63 - lr: 0.000012 - momentum: 0.000000
2023-10-13 10:49:14,828 epoch 7 - iter 144/242 - loss 0.03104367 - time (sec): 6.52 - samples/sec: 2266.30 - lr: 0.000011 - momentum: 0.000000
2023-10-13 10:49:15,885 epoch 7 - iter 168/242 - loss 0.03112205 - time (sec): 7.58 - samples/sec: 2233.37 - lr: 0.000011 - momentum: 0.000000
2023-10-13 10:49:16,961 epoch 7 - iter 192/242 - loss 0.03365939 - time (sec): 8.65 - samples/sec: 2260.23 - lr: 0.000011 - momentum: 0.000000
2023-10-13 10:49:17,975 epoch 7 - iter 216/242 - loss 0.03144889 - time (sec): 9.67 - samples/sec: 2268.47 - lr: 0.000010 - momentum: 0.000000
2023-10-13 10:49:18,991 epoch 7 - iter 240/242 - loss 0.03122881 - time (sec): 10.68 - samples/sec: 2296.18 - lr: 0.000010 - momentum: 0.000000
2023-10-13 10:49:19,079 ----------------------------------------------------------------------------------------------------
2023-10-13 10:49:19,079 EPOCH 7 done: loss 0.0313 - lr: 0.000010
2023-10-13 10:49:19,885 DEV : loss 0.18848736584186554 - f1-score (micro avg)  0.8409
2023-10-13 10:49:19,891 ----------------------------------------------------------------------------------------------------
2023-10-13 10:49:20,932 epoch 8 - iter 24/242 - loss 0.01927510 - time (sec): 1.04 - samples/sec: 2347.61 - lr: 0.000010 - momentum: 0.000000
2023-10-13 10:49:22,005 epoch 8 - iter 48/242 - loss 0.02463260 - time (sec): 2.11 - samples/sec: 2330.37 - lr: 0.000009 - momentum: 0.000000
2023-10-13 10:49:23,076 epoch 8 - iter 72/242 - loss 0.02726866 - time (sec): 3.18 - samples/sec: 2233.21 - lr: 0.000009 - momentum: 0.000000
2023-10-13 10:49:24,239 epoch 8 - iter 96/242 - loss 0.02300393 - time (sec): 4.35 - samples/sec: 2168.54 - lr: 0.000009 - momentum: 0.000000
2023-10-13 10:49:25,323 epoch 8 - iter 120/242 - loss 0.02083412 - time (sec): 5.43 - samples/sec: 2200.59 - lr: 0.000008 - momentum: 0.000000
2023-10-13 10:49:26,392 epoch 8 - iter 144/242 - loss 0.02701189 - time (sec): 6.50 - samples/sec: 2212.51 - lr: 0.000008 - momentum: 0.000000
2023-10-13 10:49:27,474 epoch 8 - iter 168/242 - loss 0.02613039 - time (sec): 7.58 - samples/sec: 2248.12 - lr: 0.000008 - momentum: 0.000000
2023-10-13 10:49:28,563 epoch 8 - iter 192/242 - loss 0.02688347 - time (sec): 8.67 - samples/sec: 2248.58 - lr: 0.000007 - momentum: 0.000000
2023-10-13 10:49:29,612 epoch 8 - iter 216/242 - loss 0.02593304 - time (sec): 9.72 - samples/sec: 2235.60 - lr: 0.000007 - momentum: 0.000000
2023-10-13 10:49:30,710 epoch 8 - iter 240/242 - loss 0.02401868 - time (sec): 10.82 - samples/sec: 2268.81 - lr: 0.000007 - momentum: 0.000000
2023-10-13 10:49:30,798 ----------------------------------------------------------------------------------------------------
2023-10-13 10:49:30,799 EPOCH 8 done: loss 0.0240 - lr: 0.000007
2023-10-13 10:49:31,591 DEV : loss 0.20379725098609924 - f1-score (micro avg)  0.8309
2023-10-13 10:49:31,603 ----------------------------------------------------------------------------------------------------
2023-10-13 10:49:32,940 epoch 9 - iter 24/242 - loss 0.01808826 - time (sec): 1.34 - samples/sec: 1864.21 - lr: 0.000006 - momentum: 0.000000
2023-10-13 10:49:34,165 epoch 9 - iter 48/242 - loss 0.01843967 - time (sec): 2.56 - samples/sec: 1904.33 - lr: 0.000006 - momentum: 0.000000
2023-10-13 10:49:35,239 epoch 9 - iter 72/242 - loss 0.01893930 - time (sec): 3.63 - samples/sec: 2075.55 - lr: 0.000006 - momentum: 0.000000
2023-10-13 10:49:36,320 epoch 9 - iter 96/242 - loss 0.01931122 - time (sec): 4.72 - samples/sec: 2168.66 - lr: 0.000005 - momentum: 0.000000
2023-10-13 10:49:37,392 epoch 9 - iter 120/242 - loss 0.02302219 - time (sec): 5.79 - samples/sec: 2212.05 - lr: 0.000005 - momentum: 0.000000
2023-10-13 10:49:38,448 epoch 9 - iter 144/242 - loss 0.02045805 - time (sec): 6.84 - samples/sec: 2249.74 - lr: 0.000005 - momentum: 0.000000
2023-10-13 10:49:39,497 epoch 9 - iter 168/242 - loss 0.01946463 - time (sec): 7.89 - samples/sec: 2269.78 - lr: 0.000004 - momentum: 0.000000
2023-10-13 10:49:40,554 epoch 9 - iter 192/242 - loss 0.01891538 - time (sec): 8.95 - samples/sec: 2256.21 - lr: 0.000004 - momentum: 0.000000
2023-10-13 10:49:41,607 epoch 9 - iter 216/242 - loss 0.01897938 - time (sec): 10.00 - samples/sec: 2220.33 - lr: 0.000004 - momentum: 0.000000
2023-10-13 10:49:42,685 epoch 9 - iter 240/242 - loss 0.01792783 - time (sec): 11.08 - samples/sec: 2213.06 - lr: 0.000003 - momentum: 0.000000
2023-10-13 10:49:42,784 ----------------------------------------------------------------------------------------------------
2023-10-13 10:49:42,784 EPOCH 9 done: loss 0.0178 - lr: 0.000003
2023-10-13 10:49:43,596 DEV : loss 0.21329720318317413 - f1-score (micro avg)  0.8264
2023-10-13 10:49:43,602 ----------------------------------------------------------------------------------------------------
2023-10-13 10:49:44,626 epoch 10 - iter 24/242 - loss 0.01256773 - time (sec): 1.02 - samples/sec: 2279.91 - lr: 0.000003 - momentum: 0.000000
2023-10-13 10:49:45,674 epoch 10 - iter 48/242 - loss 0.01101680 - time (sec): 2.07 - samples/sec: 2366.36 - lr: 0.000003 - momentum: 0.000000
2023-10-13 10:49:46,762 epoch 10 - iter 72/242 - loss 0.01117024 - time (sec): 3.16 - samples/sec: 2404.12 - lr: 0.000002 - momentum: 0.000000
2023-10-13 10:49:47,795 epoch 10 - iter 96/242 - loss 0.00960110 - time (sec): 4.19 - samples/sec: 2368.89 - lr: 0.000002 - momentum: 0.000000
2023-10-13 10:49:48,839 epoch 10 - iter 120/242 - loss 0.00973317 - time (sec): 5.24 - samples/sec: 2341.92 - lr: 0.000002 - momentum: 0.000000
2023-10-13 10:49:49,916 epoch 10 - iter 144/242 - loss 0.00905820 - time (sec): 6.31 - samples/sec: 2329.13 - lr: 0.000001 - momentum: 0.000000
2023-10-13 10:49:51,017 epoch 10 - iter 168/242 - loss 0.01208288 - time (sec): 7.41 - samples/sec: 2301.57 - lr: 0.000001 - momentum: 0.000000
2023-10-13 10:49:52,155 epoch 10 - iter 192/242 - loss 0.01328828 - time (sec): 8.55 - samples/sec: 2287.93 - lr: 0.000001 - momentum: 0.000000
2023-10-13 10:49:53,270 epoch 10 - iter 216/242 - loss 0.01311083 - time (sec): 9.67 - samples/sec: 2275.11 - lr: 0.000000 - momentum: 0.000000
2023-10-13 10:49:54,342 epoch 10 - iter 240/242 - loss 0.01454627 - time (sec): 10.74 - samples/sec: 2287.32 - lr: 0.000000 - momentum: 0.000000
2023-10-13 10:49:54,429 ----------------------------------------------------------------------------------------------------
2023-10-13 10:49:54,429 EPOCH 10 done: loss 0.0144 - lr: 0.000000
2023-10-13 10:49:55,197 DEV : loss 0.21672213077545166 - f1-score (micro avg)  0.8341
2023-10-13 10:49:55,589 ----------------------------------------------------------------------------------------------------
2023-10-13 10:49:55,590 Loading model from best epoch ...
2023-10-13 10:49:57,041 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-13 10:49:57,941 
Results:
- F-score (micro) 0.8136
- F-score (macro) 0.5894
- Accuracy 0.7002

By class:
              precision    recall  f1-score   support

        pers     0.8333    0.8633    0.8481       139
       scope     0.8029    0.8527    0.8271       129
        work     0.7253    0.8250    0.7719        80
         loc     1.0000    0.3333    0.5000         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7973    0.8306    0.8136       360
   macro avg     0.6723    0.5749    0.5894       360
weighted avg     0.7956    0.8306    0.8078       360

2023-10-13 10:49:57,942 ----------------------------------------------------------------------------------------------------