File size: 23,827 Bytes
128a210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
2023-10-13 10:30:09,192 ----------------------------------------------------------------------------------------------------
2023-10-13 10:30:09,193 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 10:30:09,193 ----------------------------------------------------------------------------------------------------
2023-10-13 10:30:09,193 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-13 10:30:09,193 ----------------------------------------------------------------------------------------------------
2023-10-13 10:30:09,193 Train:  966 sentences
2023-10-13 10:30:09,193         (train_with_dev=False, train_with_test=False)
2023-10-13 10:30:09,193 ----------------------------------------------------------------------------------------------------
2023-10-13 10:30:09,193 Training Params:
2023-10-13 10:30:09,193  - learning_rate: "3e-05" 
2023-10-13 10:30:09,193  - mini_batch_size: "4"
2023-10-13 10:30:09,193  - max_epochs: "10"
2023-10-13 10:30:09,193  - shuffle: "True"
2023-10-13 10:30:09,193 ----------------------------------------------------------------------------------------------------
2023-10-13 10:30:09,193 Plugins:
2023-10-13 10:30:09,193  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 10:30:09,193 ----------------------------------------------------------------------------------------------------
2023-10-13 10:30:09,193 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 10:30:09,193  - metric: "('micro avg', 'f1-score')"
2023-10-13 10:30:09,193 ----------------------------------------------------------------------------------------------------
2023-10-13 10:30:09,194 Computation:
2023-10-13 10:30:09,194  - compute on device: cuda:0
2023-10-13 10:30:09,194  - embedding storage: none
2023-10-13 10:30:09,194 ----------------------------------------------------------------------------------------------------
2023-10-13 10:30:09,194 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-13 10:30:09,194 ----------------------------------------------------------------------------------------------------
2023-10-13 10:30:09,194 ----------------------------------------------------------------------------------------------------
2023-10-13 10:30:11,316 epoch 1 - iter 24/242 - loss 3.31899833 - time (sec): 2.12 - samples/sec: 1099.73 - lr: 0.000003 - momentum: 0.000000
2023-10-13 10:30:12,625 epoch 1 - iter 48/242 - loss 2.96790424 - time (sec): 3.43 - samples/sec: 1462.00 - lr: 0.000006 - momentum: 0.000000
2023-10-13 10:30:13,935 epoch 1 - iter 72/242 - loss 2.37819050 - time (sec): 4.74 - samples/sec: 1614.82 - lr: 0.000009 - momentum: 0.000000
2023-10-13 10:30:15,194 epoch 1 - iter 96/242 - loss 1.96624830 - time (sec): 6.00 - samples/sec: 1677.13 - lr: 0.000012 - momentum: 0.000000
2023-10-13 10:30:16,452 epoch 1 - iter 120/242 - loss 1.73643668 - time (sec): 7.26 - samples/sec: 1683.88 - lr: 0.000015 - momentum: 0.000000
2023-10-13 10:30:17,743 epoch 1 - iter 144/242 - loss 1.51974639 - time (sec): 8.55 - samples/sec: 1739.01 - lr: 0.000018 - momentum: 0.000000
2023-10-13 10:30:19,013 epoch 1 - iter 168/242 - loss 1.36954910 - time (sec): 9.82 - samples/sec: 1761.71 - lr: 0.000021 - momentum: 0.000000
2023-10-13 10:30:20,238 epoch 1 - iter 192/242 - loss 1.24200364 - time (sec): 11.04 - samples/sec: 1801.53 - lr: 0.000024 - momentum: 0.000000
2023-10-13 10:30:21,443 epoch 1 - iter 216/242 - loss 1.14147406 - time (sec): 12.25 - samples/sec: 1811.60 - lr: 0.000027 - momentum: 0.000000
2023-10-13 10:30:22,713 epoch 1 - iter 240/242 - loss 1.05944884 - time (sec): 13.52 - samples/sec: 1816.46 - lr: 0.000030 - momentum: 0.000000
2023-10-13 10:30:22,834 ----------------------------------------------------------------------------------------------------
2023-10-13 10:30:22,834 EPOCH 1 done: loss 1.0537 - lr: 0.000030
2023-10-13 10:30:23,525 DEV : loss 0.27631089091300964 - f1-score (micro avg)  0.457
2023-10-13 10:30:23,530 saving best model
2023-10-13 10:30:23,924 ----------------------------------------------------------------------------------------------------
2023-10-13 10:30:25,134 epoch 2 - iter 24/242 - loss 0.25291019 - time (sec): 1.21 - samples/sec: 2019.76 - lr: 0.000030 - momentum: 0.000000
2023-10-13 10:30:26,315 epoch 2 - iter 48/242 - loss 0.28868353 - time (sec): 2.39 - samples/sec: 1996.82 - lr: 0.000029 - momentum: 0.000000
2023-10-13 10:30:27,555 epoch 2 - iter 72/242 - loss 0.26832173 - time (sec): 3.63 - samples/sec: 2035.03 - lr: 0.000029 - momentum: 0.000000
2023-10-13 10:30:28,799 epoch 2 - iter 96/242 - loss 0.25056380 - time (sec): 4.87 - samples/sec: 2040.48 - lr: 0.000029 - momentum: 0.000000
2023-10-13 10:30:30,034 epoch 2 - iter 120/242 - loss 0.24861522 - time (sec): 6.11 - samples/sec: 2019.03 - lr: 0.000028 - momentum: 0.000000
2023-10-13 10:30:31,264 epoch 2 - iter 144/242 - loss 0.24350868 - time (sec): 7.34 - samples/sec: 1981.02 - lr: 0.000028 - momentum: 0.000000
2023-10-13 10:30:32,502 epoch 2 - iter 168/242 - loss 0.23234542 - time (sec): 8.58 - samples/sec: 1988.14 - lr: 0.000028 - momentum: 0.000000
2023-10-13 10:30:33,737 epoch 2 - iter 192/242 - loss 0.23022383 - time (sec): 9.81 - samples/sec: 1999.91 - lr: 0.000027 - momentum: 0.000000
2023-10-13 10:30:34,936 epoch 2 - iter 216/242 - loss 0.21995150 - time (sec): 11.01 - samples/sec: 2043.60 - lr: 0.000027 - momentum: 0.000000
2023-10-13 10:30:36,034 epoch 2 - iter 240/242 - loss 0.21735290 - time (sec): 12.11 - samples/sec: 2034.20 - lr: 0.000027 - momentum: 0.000000
2023-10-13 10:30:36,117 ----------------------------------------------------------------------------------------------------
2023-10-13 10:30:36,117 EPOCH 2 done: loss 0.2168 - lr: 0.000027
2023-10-13 10:30:36,917 DEV : loss 0.14946463704109192 - f1-score (micro avg)  0.7621
2023-10-13 10:30:36,924 saving best model
2023-10-13 10:30:37,446 ----------------------------------------------------------------------------------------------------
2023-10-13 10:30:38,618 epoch 3 - iter 24/242 - loss 0.18291948 - time (sec): 1.17 - samples/sec: 2092.17 - lr: 0.000026 - momentum: 0.000000
2023-10-13 10:30:39,983 epoch 3 - iter 48/242 - loss 0.15886607 - time (sec): 2.53 - samples/sec: 1968.78 - lr: 0.000026 - momentum: 0.000000
2023-10-13 10:30:41,202 epoch 3 - iter 72/242 - loss 0.13699532 - time (sec): 3.75 - samples/sec: 1971.01 - lr: 0.000026 - momentum: 0.000000
2023-10-13 10:30:42,261 epoch 3 - iter 96/242 - loss 0.13323718 - time (sec): 4.81 - samples/sec: 2019.19 - lr: 0.000025 - momentum: 0.000000
2023-10-13 10:30:43,378 epoch 3 - iter 120/242 - loss 0.12809419 - time (sec): 5.93 - samples/sec: 2056.47 - lr: 0.000025 - momentum: 0.000000
2023-10-13 10:30:44,545 epoch 3 - iter 144/242 - loss 0.11962736 - time (sec): 7.10 - samples/sec: 2068.28 - lr: 0.000025 - momentum: 0.000000
2023-10-13 10:30:45,597 epoch 3 - iter 168/242 - loss 0.12663136 - time (sec): 8.15 - samples/sec: 2098.46 - lr: 0.000024 - momentum: 0.000000
2023-10-13 10:30:46,739 epoch 3 - iter 192/242 - loss 0.12128219 - time (sec): 9.29 - samples/sec: 2118.70 - lr: 0.000024 - momentum: 0.000000
2023-10-13 10:30:47,876 epoch 3 - iter 216/242 - loss 0.12074200 - time (sec): 10.43 - samples/sec: 2126.21 - lr: 0.000024 - momentum: 0.000000
2023-10-13 10:30:49,007 epoch 3 - iter 240/242 - loss 0.12123157 - time (sec): 11.56 - samples/sec: 2127.78 - lr: 0.000023 - momentum: 0.000000
2023-10-13 10:30:49,096 ----------------------------------------------------------------------------------------------------
2023-10-13 10:30:49,097 EPOCH 3 done: loss 0.1219 - lr: 0.000023
2023-10-13 10:30:49,922 DEV : loss 0.1250181347131729 - f1-score (micro avg)  0.8202
2023-10-13 10:30:49,927 saving best model
2023-10-13 10:30:50,429 ----------------------------------------------------------------------------------------------------
2023-10-13 10:30:51,583 epoch 4 - iter 24/242 - loss 0.12817993 - time (sec): 1.15 - samples/sec: 2190.49 - lr: 0.000023 - momentum: 0.000000
2023-10-13 10:30:52,701 epoch 4 - iter 48/242 - loss 0.09658017 - time (sec): 2.27 - samples/sec: 2274.08 - lr: 0.000023 - momentum: 0.000000
2023-10-13 10:30:53,861 epoch 4 - iter 72/242 - loss 0.08645078 - time (sec): 3.43 - samples/sec: 2234.05 - lr: 0.000022 - momentum: 0.000000
2023-10-13 10:30:55,032 epoch 4 - iter 96/242 - loss 0.08823514 - time (sec): 4.60 - samples/sec: 2122.16 - lr: 0.000022 - momentum: 0.000000
2023-10-13 10:30:56,153 epoch 4 - iter 120/242 - loss 0.08030354 - time (sec): 5.72 - samples/sec: 2190.18 - lr: 0.000022 - momentum: 0.000000
2023-10-13 10:30:57,271 epoch 4 - iter 144/242 - loss 0.08186884 - time (sec): 6.84 - samples/sec: 2181.87 - lr: 0.000021 - momentum: 0.000000
2023-10-13 10:30:58,487 epoch 4 - iter 168/242 - loss 0.08565366 - time (sec): 8.06 - samples/sec: 2156.28 - lr: 0.000021 - momentum: 0.000000
2023-10-13 10:30:59,707 epoch 4 - iter 192/242 - loss 0.08516789 - time (sec): 9.28 - samples/sec: 2127.35 - lr: 0.000021 - momentum: 0.000000
2023-10-13 10:31:00,937 epoch 4 - iter 216/242 - loss 0.08260317 - time (sec): 10.51 - samples/sec: 2094.32 - lr: 0.000020 - momentum: 0.000000
2023-10-13 10:31:02,125 epoch 4 - iter 240/242 - loss 0.08329194 - time (sec): 11.69 - samples/sec: 2099.31 - lr: 0.000020 - momentum: 0.000000
2023-10-13 10:31:02,212 ----------------------------------------------------------------------------------------------------
2023-10-13 10:31:02,213 EPOCH 4 done: loss 0.0832 - lr: 0.000020
2023-10-13 10:31:03,064 DEV : loss 0.12788808345794678 - f1-score (micro avg)  0.8173
2023-10-13 10:31:03,069 ----------------------------------------------------------------------------------------------------
2023-10-13 10:31:04,301 epoch 5 - iter 24/242 - loss 0.05323062 - time (sec): 1.23 - samples/sec: 2054.39 - lr: 0.000020 - momentum: 0.000000
2023-10-13 10:31:05,453 epoch 5 - iter 48/242 - loss 0.06788494 - time (sec): 2.38 - samples/sec: 2019.33 - lr: 0.000019 - momentum: 0.000000
2023-10-13 10:31:06,610 epoch 5 - iter 72/242 - loss 0.06078541 - time (sec): 3.54 - samples/sec: 2062.05 - lr: 0.000019 - momentum: 0.000000
2023-10-13 10:31:07,755 epoch 5 - iter 96/242 - loss 0.05537332 - time (sec): 4.68 - samples/sec: 2055.60 - lr: 0.000019 - momentum: 0.000000
2023-10-13 10:31:08,869 epoch 5 - iter 120/242 - loss 0.05728335 - time (sec): 5.80 - samples/sec: 2130.10 - lr: 0.000018 - momentum: 0.000000
2023-10-13 10:31:09,944 epoch 5 - iter 144/242 - loss 0.05842797 - time (sec): 6.87 - samples/sec: 2195.35 - lr: 0.000018 - momentum: 0.000000
2023-10-13 10:31:11,013 epoch 5 - iter 168/242 - loss 0.05932681 - time (sec): 7.94 - samples/sec: 2222.93 - lr: 0.000018 - momentum: 0.000000
2023-10-13 10:31:12,102 epoch 5 - iter 192/242 - loss 0.05776849 - time (sec): 9.03 - samples/sec: 2211.23 - lr: 0.000017 - momentum: 0.000000
2023-10-13 10:31:13,144 epoch 5 - iter 216/242 - loss 0.05734916 - time (sec): 10.07 - samples/sec: 2184.78 - lr: 0.000017 - momentum: 0.000000
2023-10-13 10:31:14,209 epoch 5 - iter 240/242 - loss 0.06319448 - time (sec): 11.14 - samples/sec: 2200.20 - lr: 0.000017 - momentum: 0.000000
2023-10-13 10:31:14,297 ----------------------------------------------------------------------------------------------------
2023-10-13 10:31:14,298 EPOCH 5 done: loss 0.0632 - lr: 0.000017
2023-10-13 10:31:15,123 DEV : loss 0.14355506002902985 - f1-score (micro avg)  0.8088
2023-10-13 10:31:15,128 ----------------------------------------------------------------------------------------------------
2023-10-13 10:31:16,350 epoch 6 - iter 24/242 - loss 0.03620606 - time (sec): 1.22 - samples/sec: 2088.71 - lr: 0.000016 - momentum: 0.000000
2023-10-13 10:31:17,549 epoch 6 - iter 48/242 - loss 0.05031164 - time (sec): 2.42 - samples/sec: 1929.09 - lr: 0.000016 - momentum: 0.000000
2023-10-13 10:31:18,745 epoch 6 - iter 72/242 - loss 0.04763385 - time (sec): 3.62 - samples/sec: 1944.95 - lr: 0.000016 - momentum: 0.000000
2023-10-13 10:31:19,911 epoch 6 - iter 96/242 - loss 0.04680506 - time (sec): 4.78 - samples/sec: 1955.54 - lr: 0.000015 - momentum: 0.000000
2023-10-13 10:31:21,079 epoch 6 - iter 120/242 - loss 0.04553476 - time (sec): 5.95 - samples/sec: 2025.34 - lr: 0.000015 - momentum: 0.000000
2023-10-13 10:31:22,243 epoch 6 - iter 144/242 - loss 0.04492284 - time (sec): 7.11 - samples/sec: 2042.94 - lr: 0.000015 - momentum: 0.000000
2023-10-13 10:31:23,419 epoch 6 - iter 168/242 - loss 0.04377389 - time (sec): 8.29 - samples/sec: 2076.37 - lr: 0.000014 - momentum: 0.000000
2023-10-13 10:31:24,567 epoch 6 - iter 192/242 - loss 0.04183081 - time (sec): 9.44 - samples/sec: 2113.37 - lr: 0.000014 - momentum: 0.000000
2023-10-13 10:31:25,718 epoch 6 - iter 216/242 - loss 0.04363399 - time (sec): 10.59 - samples/sec: 2121.87 - lr: 0.000014 - momentum: 0.000000
2023-10-13 10:31:26,813 epoch 6 - iter 240/242 - loss 0.04419028 - time (sec): 11.68 - samples/sec: 2107.39 - lr: 0.000013 - momentum: 0.000000
2023-10-13 10:31:26,904 ----------------------------------------------------------------------------------------------------
2023-10-13 10:31:26,904 EPOCH 6 done: loss 0.0441 - lr: 0.000013
2023-10-13 10:31:27,724 DEV : loss 0.1649819314479828 - f1-score (micro avg)  0.8183
2023-10-13 10:31:27,729 ----------------------------------------------------------------------------------------------------
2023-10-13 10:31:28,813 epoch 7 - iter 24/242 - loss 0.03165528 - time (sec): 1.08 - samples/sec: 2042.55 - lr: 0.000013 - momentum: 0.000000
2023-10-13 10:31:29,923 epoch 7 - iter 48/242 - loss 0.02546364 - time (sec): 2.19 - samples/sec: 2105.70 - lr: 0.000013 - momentum: 0.000000
2023-10-13 10:31:31,053 epoch 7 - iter 72/242 - loss 0.02380691 - time (sec): 3.32 - samples/sec: 2162.89 - lr: 0.000012 - momentum: 0.000000
2023-10-13 10:31:32,166 epoch 7 - iter 96/242 - loss 0.02865025 - time (sec): 4.44 - samples/sec: 2162.77 - lr: 0.000012 - momentum: 0.000000
2023-10-13 10:31:33,249 epoch 7 - iter 120/242 - loss 0.03286107 - time (sec): 5.52 - samples/sec: 2184.29 - lr: 0.000012 - momentum: 0.000000
2023-10-13 10:31:34,348 epoch 7 - iter 144/242 - loss 0.03808170 - time (sec): 6.62 - samples/sec: 2216.88 - lr: 0.000011 - momentum: 0.000000
2023-10-13 10:31:35,438 epoch 7 - iter 168/242 - loss 0.03745498 - time (sec): 7.71 - samples/sec: 2247.71 - lr: 0.000011 - momentum: 0.000000
2023-10-13 10:31:36,523 epoch 7 - iter 192/242 - loss 0.03486179 - time (sec): 8.79 - samples/sec: 2252.25 - lr: 0.000011 - momentum: 0.000000
2023-10-13 10:31:37,601 epoch 7 - iter 216/242 - loss 0.03330677 - time (sec): 9.87 - samples/sec: 2232.51 - lr: 0.000010 - momentum: 0.000000
2023-10-13 10:31:38,735 epoch 7 - iter 240/242 - loss 0.03221765 - time (sec): 11.00 - samples/sec: 2242.25 - lr: 0.000010 - momentum: 0.000000
2023-10-13 10:31:38,822 ----------------------------------------------------------------------------------------------------
2023-10-13 10:31:38,822 EPOCH 7 done: loss 0.0321 - lr: 0.000010
2023-10-13 10:31:39,671 DEV : loss 0.1871682107448578 - f1-score (micro avg)  0.8069
2023-10-13 10:31:39,676 ----------------------------------------------------------------------------------------------------
2023-10-13 10:31:40,777 epoch 8 - iter 24/242 - loss 0.01700191 - time (sec): 1.10 - samples/sec: 2214.72 - lr: 0.000010 - momentum: 0.000000
2023-10-13 10:31:41,955 epoch 8 - iter 48/242 - loss 0.01712285 - time (sec): 2.28 - samples/sec: 2021.92 - lr: 0.000009 - momentum: 0.000000
2023-10-13 10:31:43,087 epoch 8 - iter 72/242 - loss 0.02033325 - time (sec): 3.41 - samples/sec: 2071.63 - lr: 0.000009 - momentum: 0.000000
2023-10-13 10:31:44,180 epoch 8 - iter 96/242 - loss 0.01811933 - time (sec): 4.50 - samples/sec: 2065.26 - lr: 0.000009 - momentum: 0.000000
2023-10-13 10:31:45,378 epoch 8 - iter 120/242 - loss 0.01662740 - time (sec): 5.70 - samples/sec: 2134.06 - lr: 0.000008 - momentum: 0.000000
2023-10-13 10:31:46,543 epoch 8 - iter 144/242 - loss 0.01520657 - time (sec): 6.86 - samples/sec: 2131.70 - lr: 0.000008 - momentum: 0.000000
2023-10-13 10:31:47,677 epoch 8 - iter 168/242 - loss 0.01531022 - time (sec): 8.00 - samples/sec: 2118.00 - lr: 0.000008 - momentum: 0.000000
2023-10-13 10:31:48,782 epoch 8 - iter 192/242 - loss 0.01806298 - time (sec): 9.10 - samples/sec: 2148.20 - lr: 0.000007 - momentum: 0.000000
2023-10-13 10:31:49,864 epoch 8 - iter 216/242 - loss 0.02135875 - time (sec): 10.19 - samples/sec: 2170.09 - lr: 0.000007 - momentum: 0.000000
2023-10-13 10:31:50,948 epoch 8 - iter 240/242 - loss 0.02328127 - time (sec): 11.27 - samples/sec: 2183.11 - lr: 0.000007 - momentum: 0.000000
2023-10-13 10:31:51,034 ----------------------------------------------------------------------------------------------------
2023-10-13 10:31:51,034 EPOCH 8 done: loss 0.0232 - lr: 0.000007
2023-10-13 10:31:51,824 DEV : loss 0.19017556309700012 - f1-score (micro avg)  0.8074
2023-10-13 10:31:51,829 ----------------------------------------------------------------------------------------------------
2023-10-13 10:31:52,940 epoch 9 - iter 24/242 - loss 0.01171644 - time (sec): 1.11 - samples/sec: 2446.12 - lr: 0.000006 - momentum: 0.000000
2023-10-13 10:31:54,081 epoch 9 - iter 48/242 - loss 0.01109408 - time (sec): 2.25 - samples/sec: 2346.81 - lr: 0.000006 - momentum: 0.000000
2023-10-13 10:31:55,183 epoch 9 - iter 72/242 - loss 0.01061616 - time (sec): 3.35 - samples/sec: 2216.51 - lr: 0.000006 - momentum: 0.000000
2023-10-13 10:31:56,296 epoch 9 - iter 96/242 - loss 0.01554713 - time (sec): 4.47 - samples/sec: 2233.37 - lr: 0.000005 - momentum: 0.000000
2023-10-13 10:31:57,371 epoch 9 - iter 120/242 - loss 0.01353043 - time (sec): 5.54 - samples/sec: 2255.15 - lr: 0.000005 - momentum: 0.000000
2023-10-13 10:31:58,482 epoch 9 - iter 144/242 - loss 0.01882666 - time (sec): 6.65 - samples/sec: 2293.73 - lr: 0.000005 - momentum: 0.000000
2023-10-13 10:31:59,560 epoch 9 - iter 168/242 - loss 0.01755098 - time (sec): 7.73 - samples/sec: 2282.37 - lr: 0.000004 - momentum: 0.000000
2023-10-13 10:32:00,720 epoch 9 - iter 192/242 - loss 0.01714456 - time (sec): 8.89 - samples/sec: 2235.67 - lr: 0.000004 - momentum: 0.000000
2023-10-13 10:32:01,808 epoch 9 - iter 216/242 - loss 0.01700689 - time (sec): 9.98 - samples/sec: 2256.60 - lr: 0.000004 - momentum: 0.000000
2023-10-13 10:32:02,879 epoch 9 - iter 240/242 - loss 0.01626621 - time (sec): 11.05 - samples/sec: 2229.19 - lr: 0.000003 - momentum: 0.000000
2023-10-13 10:32:02,965 ----------------------------------------------------------------------------------------------------
2023-10-13 10:32:02,966 EPOCH 9 done: loss 0.0162 - lr: 0.000003
2023-10-13 10:32:03,716 DEV : loss 0.2009798139333725 - f1-score (micro avg)  0.8169
2023-10-13 10:32:03,721 ----------------------------------------------------------------------------------------------------
2023-10-13 10:32:04,784 epoch 10 - iter 24/242 - loss 0.02317398 - time (sec): 1.06 - samples/sec: 2128.45 - lr: 0.000003 - momentum: 0.000000
2023-10-13 10:32:05,865 epoch 10 - iter 48/242 - loss 0.02491819 - time (sec): 2.14 - samples/sec: 2189.82 - lr: 0.000003 - momentum: 0.000000
2023-10-13 10:32:06,936 epoch 10 - iter 72/242 - loss 0.02514844 - time (sec): 3.21 - samples/sec: 2264.57 - lr: 0.000002 - momentum: 0.000000
2023-10-13 10:32:08,134 epoch 10 - iter 96/242 - loss 0.02131346 - time (sec): 4.41 - samples/sec: 2244.67 - lr: 0.000002 - momentum: 0.000000
2023-10-13 10:32:09,333 epoch 10 - iter 120/242 - loss 0.01880207 - time (sec): 5.61 - samples/sec: 2212.12 - lr: 0.000002 - momentum: 0.000000
2023-10-13 10:32:10,487 epoch 10 - iter 144/242 - loss 0.01830613 - time (sec): 6.77 - samples/sec: 2156.40 - lr: 0.000001 - momentum: 0.000000
2023-10-13 10:32:11,608 epoch 10 - iter 168/242 - loss 0.01761614 - time (sec): 7.89 - samples/sec: 2137.04 - lr: 0.000001 - momentum: 0.000000
2023-10-13 10:32:12,752 epoch 10 - iter 192/242 - loss 0.01679154 - time (sec): 9.03 - samples/sec: 2117.70 - lr: 0.000001 - momentum: 0.000000
2023-10-13 10:32:13,867 epoch 10 - iter 216/242 - loss 0.01529364 - time (sec): 10.14 - samples/sec: 2145.05 - lr: 0.000000 - momentum: 0.000000
2023-10-13 10:32:15,026 epoch 10 - iter 240/242 - loss 0.01407741 - time (sec): 11.30 - samples/sec: 2170.83 - lr: 0.000000 - momentum: 0.000000
2023-10-13 10:32:15,114 ----------------------------------------------------------------------------------------------------
2023-10-13 10:32:15,115 EPOCH 10 done: loss 0.0140 - lr: 0.000000
2023-10-13 10:32:15,938 DEV : loss 0.20342250168323517 - f1-score (micro avg)  0.8144
2023-10-13 10:32:16,329 ----------------------------------------------------------------------------------------------------
2023-10-13 10:32:16,330 Loading model from best epoch ...
2023-10-13 10:32:18,153 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-13 10:32:19,052 
Results:
- F-score (micro) 0.7666
- F-score (macro) 0.4582
- Accuracy 0.6465

By class:
              precision    recall  f1-score   support

        pers     0.7468    0.8489    0.7946       139
       scope     0.8028    0.8837    0.8413       129
        work     0.6064    0.7125    0.6552        80
         loc     0.0000    0.0000    0.0000         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7335    0.8028    0.7666       360
   macro avg     0.4312    0.4890    0.4582       360
weighted avg     0.7108    0.8028    0.7539       360

2023-10-13 10:32:19,052 ----------------------------------------------------------------------------------------------------