File size: 25,115 Bytes
72e7967
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
2023-10-06 14:54:04,117 ----------------------------------------------------------------------------------------------------
2023-10-06 14:54:04,118 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): T5LayerNorm()
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-06 14:54:04,118 ----------------------------------------------------------------------------------------------------
2023-10-06 14:54:04,118 MultiCorpus: 1214 train + 266 dev + 251 test sentences
 - NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-06 14:54:04,119 ----------------------------------------------------------------------------------------------------
2023-10-06 14:54:04,119 Train:  1214 sentences
2023-10-06 14:54:04,119         (train_with_dev=False, train_with_test=False)
2023-10-06 14:54:04,119 ----------------------------------------------------------------------------------------------------
2023-10-06 14:54:04,119 Training Params:
2023-10-06 14:54:04,119  - learning_rate: "0.00016" 
2023-10-06 14:54:04,119  - mini_batch_size: "8"
2023-10-06 14:54:04,119  - max_epochs: "10"
2023-10-06 14:54:04,119  - shuffle: "True"
2023-10-06 14:54:04,119 ----------------------------------------------------------------------------------------------------
2023-10-06 14:54:04,119 Plugins:
2023-10-06 14:54:04,119  - TensorboardLogger
2023-10-06 14:54:04,119  - LinearScheduler | warmup_fraction: '0.1'
2023-10-06 14:54:04,119 ----------------------------------------------------------------------------------------------------
2023-10-06 14:54:04,119 Final evaluation on model from best epoch (best-model.pt)
2023-10-06 14:54:04,119  - metric: "('micro avg', 'f1-score')"
2023-10-06 14:54:04,119 ----------------------------------------------------------------------------------------------------
2023-10-06 14:54:04,120 Computation:
2023-10-06 14:54:04,120  - compute on device: cuda:0
2023-10-06 14:54:04,120  - embedding storage: none
2023-10-06 14:54:04,120 ----------------------------------------------------------------------------------------------------
2023-10-06 14:54:04,120 Model training base path: "hmbench-ajmc/en-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs8-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-4"
2023-10-06 14:54:04,120 ----------------------------------------------------------------------------------------------------
2023-10-06 14:54:04,120 ----------------------------------------------------------------------------------------------------
2023-10-06 14:54:04,120 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-06 14:54:15,045 epoch 1 - iter 15/152 - loss 3.24944544 - time (sec): 10.92 - samples/sec: 280.48 - lr: 0.000015 - momentum: 0.000000
2023-10-06 14:54:26,358 epoch 1 - iter 30/152 - loss 3.24250264 - time (sec): 22.24 - samples/sec: 277.56 - lr: 0.000031 - momentum: 0.000000
2023-10-06 14:54:37,201 epoch 1 - iter 45/152 - loss 3.23097880 - time (sec): 33.08 - samples/sec: 276.79 - lr: 0.000046 - momentum: 0.000000
2023-10-06 14:54:48,538 epoch 1 - iter 60/152 - loss 3.20599492 - time (sec): 44.42 - samples/sec: 275.76 - lr: 0.000062 - momentum: 0.000000
2023-10-06 14:55:00,091 epoch 1 - iter 75/152 - loss 3.15179797 - time (sec): 55.97 - samples/sec: 277.22 - lr: 0.000078 - momentum: 0.000000
2023-10-06 14:55:11,261 epoch 1 - iter 90/152 - loss 3.08113062 - time (sec): 67.14 - samples/sec: 276.63 - lr: 0.000094 - momentum: 0.000000
2023-10-06 14:55:22,033 epoch 1 - iter 105/152 - loss 2.99589247 - time (sec): 77.91 - samples/sec: 275.94 - lr: 0.000109 - momentum: 0.000000
2023-10-06 14:55:32,979 epoch 1 - iter 120/152 - loss 2.90320056 - time (sec): 88.86 - samples/sec: 274.66 - lr: 0.000125 - momentum: 0.000000
2023-10-06 14:55:44,611 epoch 1 - iter 135/152 - loss 2.79285826 - time (sec): 100.49 - samples/sec: 275.87 - lr: 0.000141 - momentum: 0.000000
2023-10-06 14:55:55,343 epoch 1 - iter 150/152 - loss 2.69377810 - time (sec): 111.22 - samples/sec: 274.81 - lr: 0.000157 - momentum: 0.000000
2023-10-06 14:55:56,812 ----------------------------------------------------------------------------------------------------
2023-10-06 14:55:56,813 EPOCH 1 done: loss 2.6808 - lr: 0.000157
2023-10-06 14:56:04,646 DEV : loss 1.5423763990402222 - f1-score (micro avg)  0.0
2023-10-06 14:56:04,653 ----------------------------------------------------------------------------------------------------
2023-10-06 14:56:16,114 epoch 2 - iter 15/152 - loss 1.45028936 - time (sec): 11.46 - samples/sec: 281.01 - lr: 0.000158 - momentum: 0.000000
2023-10-06 14:56:27,084 epoch 2 - iter 30/152 - loss 1.31419700 - time (sec): 22.43 - samples/sec: 277.85 - lr: 0.000157 - momentum: 0.000000
2023-10-06 14:56:38,327 epoch 2 - iter 45/152 - loss 1.22141358 - time (sec): 33.67 - samples/sec: 275.63 - lr: 0.000155 - momentum: 0.000000
2023-10-06 14:56:49,884 epoch 2 - iter 60/152 - loss 1.13843406 - time (sec): 45.23 - samples/sec: 277.78 - lr: 0.000153 - momentum: 0.000000
2023-10-06 14:57:00,600 epoch 2 - iter 75/152 - loss 1.08039112 - time (sec): 55.94 - samples/sec: 277.54 - lr: 0.000151 - momentum: 0.000000
2023-10-06 14:57:11,495 epoch 2 - iter 90/152 - loss 1.01221563 - time (sec): 66.84 - samples/sec: 277.48 - lr: 0.000150 - momentum: 0.000000
2023-10-06 14:57:22,606 epoch 2 - iter 105/152 - loss 0.97571095 - time (sec): 77.95 - samples/sec: 277.16 - lr: 0.000148 - momentum: 0.000000
2023-10-06 14:57:33,499 epoch 2 - iter 120/152 - loss 0.92119821 - time (sec): 88.84 - samples/sec: 276.72 - lr: 0.000146 - momentum: 0.000000
2023-10-06 14:57:44,980 epoch 2 - iter 135/152 - loss 0.87915528 - time (sec): 100.33 - samples/sec: 278.04 - lr: 0.000144 - momentum: 0.000000
2023-10-06 14:57:55,416 epoch 2 - iter 150/152 - loss 0.84045686 - time (sec): 110.76 - samples/sec: 277.49 - lr: 0.000143 - momentum: 0.000000
2023-10-06 14:57:56,460 ----------------------------------------------------------------------------------------------------
2023-10-06 14:57:56,460 EPOCH 2 done: loss 0.8375 - lr: 0.000143
2023-10-06 14:58:04,278 DEV : loss 0.5047337412834167 - f1-score (micro avg)  0.0142
2023-10-06 14:58:04,285 saving best model
2023-10-06 14:58:05,137 ----------------------------------------------------------------------------------------------------
2023-10-06 14:58:16,206 epoch 3 - iter 15/152 - loss 0.36830879 - time (sec): 11.07 - samples/sec: 269.53 - lr: 0.000141 - momentum: 0.000000
2023-10-06 14:58:27,597 epoch 3 - iter 30/152 - loss 0.37695983 - time (sec): 22.46 - samples/sec: 274.92 - lr: 0.000139 - momentum: 0.000000
2023-10-06 14:58:37,905 epoch 3 - iter 45/152 - loss 0.37352735 - time (sec): 32.77 - samples/sec: 271.68 - lr: 0.000137 - momentum: 0.000000
2023-10-06 14:58:48,591 epoch 3 - iter 60/152 - loss 0.37890694 - time (sec): 43.45 - samples/sec: 271.52 - lr: 0.000135 - momentum: 0.000000
2023-10-06 14:59:00,051 epoch 3 - iter 75/152 - loss 0.36339867 - time (sec): 54.91 - samples/sec: 275.66 - lr: 0.000134 - momentum: 0.000000
2023-10-06 14:59:10,655 epoch 3 - iter 90/152 - loss 0.35784250 - time (sec): 65.52 - samples/sec: 275.17 - lr: 0.000132 - momentum: 0.000000
2023-10-06 14:59:21,918 epoch 3 - iter 105/152 - loss 0.35112702 - time (sec): 76.78 - samples/sec: 277.68 - lr: 0.000130 - momentum: 0.000000
2023-10-06 14:59:33,043 epoch 3 - iter 120/152 - loss 0.34716540 - time (sec): 87.90 - samples/sec: 278.01 - lr: 0.000128 - momentum: 0.000000
2023-10-06 14:59:44,360 epoch 3 - iter 135/152 - loss 0.33725530 - time (sec): 99.22 - samples/sec: 278.72 - lr: 0.000127 - momentum: 0.000000
2023-10-06 14:59:55,038 epoch 3 - iter 150/152 - loss 0.33077678 - time (sec): 109.90 - samples/sec: 277.95 - lr: 0.000125 - momentum: 0.000000
2023-10-06 14:59:56,568 ----------------------------------------------------------------------------------------------------
2023-10-06 14:59:56,568 EPOCH 3 done: loss 0.3300 - lr: 0.000125
2023-10-06 15:00:04,361 DEV : loss 0.29971709847450256 - f1-score (micro avg)  0.5147
2023-10-06 15:00:04,367 saving best model
2023-10-06 15:00:08,657 ----------------------------------------------------------------------------------------------------
2023-10-06 15:00:19,398 epoch 4 - iter 15/152 - loss 0.22111745 - time (sec): 10.74 - samples/sec: 274.60 - lr: 0.000123 - momentum: 0.000000
2023-10-06 15:00:30,602 epoch 4 - iter 30/152 - loss 0.22991226 - time (sec): 21.94 - samples/sec: 279.98 - lr: 0.000121 - momentum: 0.000000
2023-10-06 15:00:41,086 epoch 4 - iter 45/152 - loss 0.22353854 - time (sec): 32.43 - samples/sec: 275.69 - lr: 0.000119 - momentum: 0.000000
2023-10-06 15:00:51,889 epoch 4 - iter 60/152 - loss 0.21205288 - time (sec): 43.23 - samples/sec: 275.40 - lr: 0.000118 - momentum: 0.000000
2023-10-06 15:01:02,655 epoch 4 - iter 75/152 - loss 0.20545775 - time (sec): 54.00 - samples/sec: 275.74 - lr: 0.000116 - momentum: 0.000000
2023-10-06 15:01:13,843 epoch 4 - iter 90/152 - loss 0.20843455 - time (sec): 65.19 - samples/sec: 276.49 - lr: 0.000114 - momentum: 0.000000
2023-10-06 15:01:25,156 epoch 4 - iter 105/152 - loss 0.20784356 - time (sec): 76.50 - samples/sec: 278.16 - lr: 0.000112 - momentum: 0.000000
2023-10-06 15:01:36,444 epoch 4 - iter 120/152 - loss 0.20651959 - time (sec): 87.79 - samples/sec: 277.86 - lr: 0.000111 - momentum: 0.000000
2023-10-06 15:01:47,962 epoch 4 - iter 135/152 - loss 0.20646267 - time (sec): 99.30 - samples/sec: 278.36 - lr: 0.000109 - momentum: 0.000000
2023-10-06 15:01:58,990 epoch 4 - iter 150/152 - loss 0.20044522 - time (sec): 110.33 - samples/sec: 278.64 - lr: 0.000107 - momentum: 0.000000
2023-10-06 15:02:00,046 ----------------------------------------------------------------------------------------------------
2023-10-06 15:02:00,046 EPOCH 4 done: loss 0.2003 - lr: 0.000107
2023-10-06 15:02:07,930 DEV : loss 0.2131974995136261 - f1-score (micro avg)  0.696
2023-10-06 15:02:07,937 saving best model
2023-10-06 15:02:12,292 ----------------------------------------------------------------------------------------------------
2023-10-06 15:02:23,063 epoch 5 - iter 15/152 - loss 0.13651155 - time (sec): 10.77 - samples/sec: 275.49 - lr: 0.000105 - momentum: 0.000000
2023-10-06 15:02:34,190 epoch 5 - iter 30/152 - loss 0.14246880 - time (sec): 21.90 - samples/sec: 285.98 - lr: 0.000104 - momentum: 0.000000
2023-10-06 15:02:45,061 epoch 5 - iter 45/152 - loss 0.14377517 - time (sec): 32.77 - samples/sec: 286.84 - lr: 0.000102 - momentum: 0.000000
2023-10-06 15:02:55,518 epoch 5 - iter 60/152 - loss 0.14293566 - time (sec): 43.23 - samples/sec: 285.25 - lr: 0.000100 - momentum: 0.000000
2023-10-06 15:03:05,926 epoch 5 - iter 75/152 - loss 0.13509826 - time (sec): 53.63 - samples/sec: 286.43 - lr: 0.000098 - momentum: 0.000000
2023-10-06 15:03:17,090 epoch 5 - iter 90/152 - loss 0.13560247 - time (sec): 64.80 - samples/sec: 289.58 - lr: 0.000097 - momentum: 0.000000
2023-10-06 15:03:27,733 epoch 5 - iter 105/152 - loss 0.14033493 - time (sec): 75.44 - samples/sec: 291.66 - lr: 0.000095 - momentum: 0.000000
2023-10-06 15:03:37,869 epoch 5 - iter 120/152 - loss 0.13801788 - time (sec): 85.58 - samples/sec: 290.50 - lr: 0.000093 - momentum: 0.000000
2023-10-06 15:03:48,244 epoch 5 - iter 135/152 - loss 0.13495779 - time (sec): 95.95 - samples/sec: 290.31 - lr: 0.000091 - momentum: 0.000000
2023-10-06 15:03:58,015 epoch 5 - iter 150/152 - loss 0.13282031 - time (sec): 105.72 - samples/sec: 289.40 - lr: 0.000090 - momentum: 0.000000
2023-10-06 15:03:59,322 ----------------------------------------------------------------------------------------------------
2023-10-06 15:03:59,323 EPOCH 5 done: loss 0.1328 - lr: 0.000090
2023-10-06 15:04:06,330 DEV : loss 0.16594909131526947 - f1-score (micro avg)  0.7552
2023-10-06 15:04:06,339 saving best model
2023-10-06 15:04:10,659 ----------------------------------------------------------------------------------------------------
2023-10-06 15:04:20,574 epoch 6 - iter 15/152 - loss 0.07286253 - time (sec): 9.91 - samples/sec: 297.17 - lr: 0.000088 - momentum: 0.000000
2023-10-06 15:04:30,596 epoch 6 - iter 30/152 - loss 0.08190653 - time (sec): 19.94 - samples/sec: 292.85 - lr: 0.000086 - momentum: 0.000000
2023-10-06 15:04:40,957 epoch 6 - iter 45/152 - loss 0.08201220 - time (sec): 30.30 - samples/sec: 288.51 - lr: 0.000084 - momentum: 0.000000
2023-10-06 15:04:51,641 epoch 6 - iter 60/152 - loss 0.08484603 - time (sec): 40.98 - samples/sec: 290.41 - lr: 0.000082 - momentum: 0.000000
2023-10-06 15:05:01,979 epoch 6 - iter 75/152 - loss 0.08338837 - time (sec): 51.32 - samples/sec: 293.50 - lr: 0.000081 - momentum: 0.000000
2023-10-06 15:05:12,517 epoch 6 - iter 90/152 - loss 0.08585472 - time (sec): 61.86 - samples/sec: 294.02 - lr: 0.000079 - momentum: 0.000000
2023-10-06 15:05:23,099 epoch 6 - iter 105/152 - loss 0.09058195 - time (sec): 72.44 - samples/sec: 293.12 - lr: 0.000077 - momentum: 0.000000
2023-10-06 15:05:33,403 epoch 6 - iter 120/152 - loss 0.09149141 - time (sec): 82.74 - samples/sec: 292.40 - lr: 0.000075 - momentum: 0.000000
2023-10-06 15:05:43,822 epoch 6 - iter 135/152 - loss 0.09044122 - time (sec): 93.16 - samples/sec: 292.03 - lr: 0.000074 - momentum: 0.000000
2023-10-06 15:05:54,785 epoch 6 - iter 150/152 - loss 0.08888543 - time (sec): 104.12 - samples/sec: 292.59 - lr: 0.000072 - momentum: 0.000000
2023-10-06 15:05:56,348 ----------------------------------------------------------------------------------------------------
2023-10-06 15:05:56,349 EPOCH 6 done: loss 0.0902 - lr: 0.000072
2023-10-06 15:06:03,654 DEV : loss 0.14003103971481323 - f1-score (micro avg)  0.8216
2023-10-06 15:06:03,661 saving best model
2023-10-06 15:06:07,966 ----------------------------------------------------------------------------------------------------
2023-10-06 15:06:19,336 epoch 7 - iter 15/152 - loss 0.09304549 - time (sec): 11.37 - samples/sec: 304.52 - lr: 0.000070 - momentum: 0.000000
2023-10-06 15:06:29,974 epoch 7 - iter 30/152 - loss 0.07562276 - time (sec): 22.01 - samples/sec: 292.14 - lr: 0.000068 - momentum: 0.000000
2023-10-06 15:06:40,446 epoch 7 - iter 45/152 - loss 0.07334318 - time (sec): 32.48 - samples/sec: 291.76 - lr: 0.000066 - momentum: 0.000000
2023-10-06 15:06:50,617 epoch 7 - iter 60/152 - loss 0.07407120 - time (sec): 42.65 - samples/sec: 284.56 - lr: 0.000065 - momentum: 0.000000
2023-10-06 15:07:01,846 epoch 7 - iter 75/152 - loss 0.07204809 - time (sec): 53.88 - samples/sec: 284.47 - lr: 0.000063 - momentum: 0.000000
2023-10-06 15:07:12,504 epoch 7 - iter 90/152 - loss 0.07172554 - time (sec): 64.54 - samples/sec: 282.82 - lr: 0.000061 - momentum: 0.000000
2023-10-06 15:07:23,447 epoch 7 - iter 105/152 - loss 0.06797482 - time (sec): 75.48 - samples/sec: 282.22 - lr: 0.000059 - momentum: 0.000000
2023-10-06 15:07:34,152 epoch 7 - iter 120/152 - loss 0.06978457 - time (sec): 86.18 - samples/sec: 281.50 - lr: 0.000058 - momentum: 0.000000
2023-10-06 15:07:45,419 epoch 7 - iter 135/152 - loss 0.06738419 - time (sec): 97.45 - samples/sec: 282.09 - lr: 0.000056 - momentum: 0.000000
2023-10-06 15:07:56,784 epoch 7 - iter 150/152 - loss 0.06940149 - time (sec): 108.82 - samples/sec: 281.76 - lr: 0.000054 - momentum: 0.000000
2023-10-06 15:07:58,063 ----------------------------------------------------------------------------------------------------
2023-10-06 15:07:58,063 EPOCH 7 done: loss 0.0689 - lr: 0.000054
2023-10-06 15:08:06,065 DEV : loss 0.14181111752986908 - f1-score (micro avg)  0.8228
2023-10-06 15:08:06,073 saving best model
2023-10-06 15:08:10,369 ----------------------------------------------------------------------------------------------------
2023-10-06 15:08:21,506 epoch 8 - iter 15/152 - loss 0.05064222 - time (sec): 11.14 - samples/sec: 274.15 - lr: 0.000052 - momentum: 0.000000
2023-10-06 15:08:32,890 epoch 8 - iter 30/152 - loss 0.07198941 - time (sec): 22.52 - samples/sec: 276.91 - lr: 0.000050 - momentum: 0.000000
2023-10-06 15:08:43,836 epoch 8 - iter 45/152 - loss 0.06404128 - time (sec): 33.47 - samples/sec: 277.15 - lr: 0.000049 - momentum: 0.000000
2023-10-06 15:08:55,623 epoch 8 - iter 60/152 - loss 0.05734585 - time (sec): 45.25 - samples/sec: 279.41 - lr: 0.000047 - momentum: 0.000000
2023-10-06 15:09:06,691 epoch 8 - iter 75/152 - loss 0.06032725 - time (sec): 56.32 - samples/sec: 278.33 - lr: 0.000045 - momentum: 0.000000
2023-10-06 15:09:17,087 epoch 8 - iter 90/152 - loss 0.05864651 - time (sec): 66.72 - samples/sec: 276.18 - lr: 0.000043 - momentum: 0.000000
2023-10-06 15:09:27,963 epoch 8 - iter 105/152 - loss 0.05785205 - time (sec): 77.59 - samples/sec: 275.58 - lr: 0.000042 - momentum: 0.000000
2023-10-06 15:09:38,769 epoch 8 - iter 120/152 - loss 0.05653871 - time (sec): 88.40 - samples/sec: 275.04 - lr: 0.000040 - momentum: 0.000000
2023-10-06 15:09:50,187 epoch 8 - iter 135/152 - loss 0.05700357 - time (sec): 99.82 - samples/sec: 274.75 - lr: 0.000038 - momentum: 0.000000
2023-10-06 15:10:01,519 epoch 8 - iter 150/152 - loss 0.05517782 - time (sec): 111.15 - samples/sec: 275.22 - lr: 0.000036 - momentum: 0.000000
2023-10-06 15:10:02,946 ----------------------------------------------------------------------------------------------------
2023-10-06 15:10:02,947 EPOCH 8 done: loss 0.0546 - lr: 0.000036
2023-10-06 15:10:10,834 DEV : loss 0.13887561857700348 - f1-score (micro avg)  0.8339
2023-10-06 15:10:10,841 saving best model
2023-10-06 15:10:15,124 ----------------------------------------------------------------------------------------------------
2023-10-06 15:10:26,833 epoch 9 - iter 15/152 - loss 0.03018573 - time (sec): 11.71 - samples/sec: 283.47 - lr: 0.000034 - momentum: 0.000000
2023-10-06 15:10:38,375 epoch 9 - iter 30/152 - loss 0.03319836 - time (sec): 23.25 - samples/sec: 280.52 - lr: 0.000033 - momentum: 0.000000
2023-10-06 15:10:48,902 epoch 9 - iter 45/152 - loss 0.03938238 - time (sec): 33.78 - samples/sec: 275.75 - lr: 0.000031 - momentum: 0.000000
2023-10-06 15:11:00,133 epoch 9 - iter 60/152 - loss 0.03910265 - time (sec): 45.01 - samples/sec: 277.55 - lr: 0.000029 - momentum: 0.000000
2023-10-06 15:11:11,452 epoch 9 - iter 75/152 - loss 0.04443264 - time (sec): 56.33 - samples/sec: 278.50 - lr: 0.000027 - momentum: 0.000000
2023-10-06 15:11:22,466 epoch 9 - iter 90/152 - loss 0.04504801 - time (sec): 67.34 - samples/sec: 278.51 - lr: 0.000026 - momentum: 0.000000
2023-10-06 15:11:33,644 epoch 9 - iter 105/152 - loss 0.04819797 - time (sec): 78.52 - samples/sec: 279.31 - lr: 0.000024 - momentum: 0.000000
2023-10-06 15:11:44,142 epoch 9 - iter 120/152 - loss 0.04718031 - time (sec): 89.02 - samples/sec: 277.53 - lr: 0.000022 - momentum: 0.000000
2023-10-06 15:11:55,011 epoch 9 - iter 135/152 - loss 0.04711017 - time (sec): 99.89 - samples/sec: 277.60 - lr: 0.000020 - momentum: 0.000000
2023-10-06 15:12:05,499 epoch 9 - iter 150/152 - loss 0.04672030 - time (sec): 110.37 - samples/sec: 276.95 - lr: 0.000019 - momentum: 0.000000
2023-10-06 15:12:06,962 ----------------------------------------------------------------------------------------------------
2023-10-06 15:12:06,962 EPOCH 9 done: loss 0.0464 - lr: 0.000019
2023-10-06 15:12:14,653 DEV : loss 0.137730672955513 - f1-score (micro avg)  0.83
2023-10-06 15:12:14,659 ----------------------------------------------------------------------------------------------------
2023-10-06 15:12:25,326 epoch 10 - iter 15/152 - loss 0.04516188 - time (sec): 10.67 - samples/sec: 280.54 - lr: 0.000017 - momentum: 0.000000
2023-10-06 15:12:36,332 epoch 10 - iter 30/152 - loss 0.04842008 - time (sec): 21.67 - samples/sec: 278.94 - lr: 0.000015 - momentum: 0.000000
2023-10-06 15:12:46,987 epoch 10 - iter 45/152 - loss 0.04303074 - time (sec): 32.33 - samples/sec: 280.51 - lr: 0.000013 - momentum: 0.000000
2023-10-06 15:12:57,904 epoch 10 - iter 60/152 - loss 0.04090721 - time (sec): 43.24 - samples/sec: 277.69 - lr: 0.000012 - momentum: 0.000000
2023-10-06 15:13:08,514 epoch 10 - iter 75/152 - loss 0.03829420 - time (sec): 53.85 - samples/sec: 273.85 - lr: 0.000010 - momentum: 0.000000
2023-10-06 15:13:19,914 epoch 10 - iter 90/152 - loss 0.04368647 - time (sec): 65.25 - samples/sec: 274.54 - lr: 0.000008 - momentum: 0.000000
2023-10-06 15:13:30,800 epoch 10 - iter 105/152 - loss 0.04082935 - time (sec): 76.14 - samples/sec: 274.42 - lr: 0.000006 - momentum: 0.000000
2023-10-06 15:13:42,223 epoch 10 - iter 120/152 - loss 0.04090036 - time (sec): 87.56 - samples/sec: 275.54 - lr: 0.000005 - momentum: 0.000000
2023-10-06 15:13:53,578 epoch 10 - iter 135/152 - loss 0.04032698 - time (sec): 98.92 - samples/sec: 277.23 - lr: 0.000003 - momentum: 0.000000
2023-10-06 15:14:04,848 epoch 10 - iter 150/152 - loss 0.04052295 - time (sec): 110.19 - samples/sec: 278.04 - lr: 0.000001 - momentum: 0.000000
2023-10-06 15:14:06,117 ----------------------------------------------------------------------------------------------------
2023-10-06 15:14:06,118 EPOCH 10 done: loss 0.0418 - lr: 0.000001
2023-10-06 15:14:13,851 DEV : loss 0.13857229053974152 - f1-score (micro avg)  0.8296
2023-10-06 15:14:14,654 ----------------------------------------------------------------------------------------------------
2023-10-06 15:14:14,655 Loading model from best epoch ...
2023-10-06 15:14:18,184 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-06 15:14:25,471 
Results:
- F-score (micro) 0.7984
- F-score (macro) 0.4845
- Accuracy 0.6751

By class:
              precision    recall  f1-score   support

       scope     0.7640    0.8146    0.7885       151
        pers     0.7826    0.9375    0.8531        96
        work     0.7130    0.8632    0.7810        95
         loc     0.0000    0.0000    0.0000         3
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7545    0.8477    0.7984       348
   macro avg     0.4519    0.5230    0.4845       348
weighted avg     0.7420    0.8477    0.7906       348

2023-10-06 15:14:25,472 ----------------------------------------------------------------------------------------------------