File size: 25,078 Bytes
79abd98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
2023-10-06 13:08:08,875 ----------------------------------------------------------------------------------------------------
2023-10-06 13:08:08,877 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): T5LayerNorm()
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-06 13:08:08,877 ----------------------------------------------------------------------------------------------------
2023-10-06 13:08:08,877 MultiCorpus: 1214 train + 266 dev + 251 test sentences
 - NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-06 13:08:08,877 ----------------------------------------------------------------------------------------------------
2023-10-06 13:08:08,877 Train:  1214 sentences
2023-10-06 13:08:08,877         (train_with_dev=False, train_with_test=False)
2023-10-06 13:08:08,877 ----------------------------------------------------------------------------------------------------
2023-10-06 13:08:08,877 Training Params:
2023-10-06 13:08:08,877  - learning_rate: "0.00015" 
2023-10-06 13:08:08,877  - mini_batch_size: "8"
2023-10-06 13:08:08,877  - max_epochs: "10"
2023-10-06 13:08:08,877  - shuffle: "True"
2023-10-06 13:08:08,877 ----------------------------------------------------------------------------------------------------
2023-10-06 13:08:08,878 Plugins:
2023-10-06 13:08:08,878  - TensorboardLogger
2023-10-06 13:08:08,878  - LinearScheduler | warmup_fraction: '0.1'
2023-10-06 13:08:08,878 ----------------------------------------------------------------------------------------------------
2023-10-06 13:08:08,878 Final evaluation on model from best epoch (best-model.pt)
2023-10-06 13:08:08,878  - metric: "('micro avg', 'f1-score')"
2023-10-06 13:08:08,878 ----------------------------------------------------------------------------------------------------
2023-10-06 13:08:08,878 Computation:
2023-10-06 13:08:08,878  - compute on device: cuda:0
2023-10-06 13:08:08,878  - embedding storage: none
2023-10-06 13:08:08,878 ----------------------------------------------------------------------------------------------------
2023-10-06 13:08:08,878 Model training base path: "hmbench-ajmc/en-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-3"
2023-10-06 13:08:08,878 ----------------------------------------------------------------------------------------------------
2023-10-06 13:08:08,878 ----------------------------------------------------------------------------------------------------
2023-10-06 13:08:08,878 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-06 13:08:19,434 epoch 1 - iter 15/152 - loss 3.21438031 - time (sec): 10.55 - samples/sec: 279.61 - lr: 0.000014 - momentum: 0.000000
2023-10-06 13:08:30,150 epoch 1 - iter 30/152 - loss 3.20540351 - time (sec): 21.27 - samples/sec: 280.91 - lr: 0.000029 - momentum: 0.000000
2023-10-06 13:08:40,815 epoch 1 - iter 45/152 - loss 3.19559217 - time (sec): 31.94 - samples/sec: 283.98 - lr: 0.000043 - momentum: 0.000000
2023-10-06 13:08:51,120 epoch 1 - iter 60/152 - loss 3.17725347 - time (sec): 42.24 - samples/sec: 282.24 - lr: 0.000058 - momentum: 0.000000
2023-10-06 13:09:01,354 epoch 1 - iter 75/152 - loss 3.14091169 - time (sec): 52.47 - samples/sec: 285.15 - lr: 0.000073 - momentum: 0.000000
2023-10-06 13:09:11,547 epoch 1 - iter 90/152 - loss 3.07834090 - time (sec): 62.67 - samples/sec: 286.56 - lr: 0.000088 - momentum: 0.000000
2023-10-06 13:09:21,906 epoch 1 - iter 105/152 - loss 2.99906148 - time (sec): 73.03 - samples/sec: 287.96 - lr: 0.000103 - momentum: 0.000000
2023-10-06 13:09:32,764 epoch 1 - iter 120/152 - loss 2.90338465 - time (sec): 83.88 - samples/sec: 290.77 - lr: 0.000117 - momentum: 0.000000
2023-10-06 13:09:43,670 epoch 1 - iter 135/152 - loss 2.80969823 - time (sec): 94.79 - samples/sec: 289.70 - lr: 0.000132 - momentum: 0.000000
2023-10-06 13:09:53,984 epoch 1 - iter 150/152 - loss 2.70892700 - time (sec): 105.10 - samples/sec: 291.40 - lr: 0.000147 - momentum: 0.000000
2023-10-06 13:09:55,194 ----------------------------------------------------------------------------------------------------
2023-10-06 13:09:55,194 EPOCH 1 done: loss 2.6974 - lr: 0.000147
2023-10-06 13:10:02,399 DEV : loss 1.6305921077728271 - f1-score (micro avg)  0.0
2023-10-06 13:10:02,412 ----------------------------------------------------------------------------------------------------
2023-10-06 13:10:12,934 epoch 2 - iter 15/152 - loss 1.57320305 - time (sec): 10.52 - samples/sec: 300.00 - lr: 0.000148 - momentum: 0.000000
2023-10-06 13:10:23,466 epoch 2 - iter 30/152 - loss 1.43312210 - time (sec): 21.05 - samples/sec: 300.59 - lr: 0.000147 - momentum: 0.000000
2023-10-06 13:10:33,164 epoch 2 - iter 45/152 - loss 1.30679236 - time (sec): 30.75 - samples/sec: 293.75 - lr: 0.000145 - momentum: 0.000000
2023-10-06 13:10:43,685 epoch 2 - iter 60/152 - loss 1.22453391 - time (sec): 41.27 - samples/sec: 292.66 - lr: 0.000144 - momentum: 0.000000
2023-10-06 13:10:54,229 epoch 2 - iter 75/152 - loss 1.15899750 - time (sec): 51.81 - samples/sec: 291.77 - lr: 0.000142 - momentum: 0.000000
2023-10-06 13:11:04,548 epoch 2 - iter 90/152 - loss 1.10009267 - time (sec): 62.13 - samples/sec: 292.05 - lr: 0.000140 - momentum: 0.000000
2023-10-06 13:11:14,863 epoch 2 - iter 105/152 - loss 1.03295088 - time (sec): 72.45 - samples/sec: 292.01 - lr: 0.000139 - momentum: 0.000000
2023-10-06 13:11:25,393 epoch 2 - iter 120/152 - loss 0.98652304 - time (sec): 82.98 - samples/sec: 291.54 - lr: 0.000137 - momentum: 0.000000
2023-10-06 13:11:36,515 epoch 2 - iter 135/152 - loss 0.93594003 - time (sec): 94.10 - samples/sec: 291.46 - lr: 0.000135 - momentum: 0.000000
2023-10-06 13:11:47,543 epoch 2 - iter 150/152 - loss 0.89467702 - time (sec): 105.13 - samples/sec: 292.02 - lr: 0.000134 - momentum: 0.000000
2023-10-06 13:11:48,621 ----------------------------------------------------------------------------------------------------
2023-10-06 13:11:48,621 EPOCH 2 done: loss 0.8913 - lr: 0.000134
2023-10-06 13:11:55,927 DEV : loss 0.5647168755531311 - f1-score (micro avg)  0.0
2023-10-06 13:11:55,934 ----------------------------------------------------------------------------------------------------
2023-10-06 13:12:06,278 epoch 3 - iter 15/152 - loss 0.55208629 - time (sec): 10.34 - samples/sec: 282.72 - lr: 0.000132 - momentum: 0.000000
2023-10-06 13:12:16,529 epoch 3 - iter 30/152 - loss 0.49683238 - time (sec): 20.59 - samples/sec: 280.97 - lr: 0.000130 - momentum: 0.000000
2023-10-06 13:12:27,371 epoch 3 - iter 45/152 - loss 0.46337786 - time (sec): 31.44 - samples/sec: 282.49 - lr: 0.000129 - momentum: 0.000000
2023-10-06 13:12:38,640 epoch 3 - iter 60/152 - loss 0.44837662 - time (sec): 42.70 - samples/sec: 285.22 - lr: 0.000127 - momentum: 0.000000
2023-10-06 13:12:49,081 epoch 3 - iter 75/152 - loss 0.41717800 - time (sec): 53.15 - samples/sec: 283.47 - lr: 0.000125 - momentum: 0.000000
2023-10-06 13:13:00,259 epoch 3 - iter 90/152 - loss 0.41097854 - time (sec): 64.32 - samples/sec: 282.62 - lr: 0.000124 - momentum: 0.000000
2023-10-06 13:13:11,316 epoch 3 - iter 105/152 - loss 0.40805842 - time (sec): 75.38 - samples/sec: 283.03 - lr: 0.000122 - momentum: 0.000000
2023-10-06 13:13:22,175 epoch 3 - iter 120/152 - loss 0.39498496 - time (sec): 86.24 - samples/sec: 282.03 - lr: 0.000120 - momentum: 0.000000
2023-10-06 13:13:32,934 epoch 3 - iter 135/152 - loss 0.38573774 - time (sec): 97.00 - samples/sec: 280.27 - lr: 0.000119 - momentum: 0.000000
2023-10-06 13:13:44,662 epoch 3 - iter 150/152 - loss 0.37384951 - time (sec): 108.73 - samples/sec: 281.55 - lr: 0.000117 - momentum: 0.000000
2023-10-06 13:13:46,031 ----------------------------------------------------------------------------------------------------
2023-10-06 13:13:46,032 EPOCH 3 done: loss 0.3753 - lr: 0.000117
2023-10-06 13:13:54,094 DEV : loss 0.32833757996559143 - f1-score (micro avg)  0.4878
2023-10-06 13:13:54,102 saving best model
2023-10-06 13:13:54,964 ----------------------------------------------------------------------------------------------------
2023-10-06 13:14:06,353 epoch 4 - iter 15/152 - loss 0.28006593 - time (sec): 11.39 - samples/sec: 274.59 - lr: 0.000115 - momentum: 0.000000
2023-10-06 13:14:17,205 epoch 4 - iter 30/152 - loss 0.28639218 - time (sec): 22.24 - samples/sec: 274.51 - lr: 0.000114 - momentum: 0.000000
2023-10-06 13:14:28,850 epoch 4 - iter 45/152 - loss 0.27015973 - time (sec): 33.88 - samples/sec: 278.86 - lr: 0.000112 - momentum: 0.000000
2023-10-06 13:14:40,557 epoch 4 - iter 60/152 - loss 0.26084485 - time (sec): 45.59 - samples/sec: 278.63 - lr: 0.000110 - momentum: 0.000000
2023-10-06 13:14:51,743 epoch 4 - iter 75/152 - loss 0.25334043 - time (sec): 56.78 - samples/sec: 279.25 - lr: 0.000109 - momentum: 0.000000
2023-10-06 13:15:03,188 epoch 4 - iter 90/152 - loss 0.24462008 - time (sec): 68.22 - samples/sec: 278.78 - lr: 0.000107 - momentum: 0.000000
2023-10-06 13:15:13,402 epoch 4 - iter 105/152 - loss 0.24376650 - time (sec): 78.44 - samples/sec: 277.79 - lr: 0.000105 - momentum: 0.000000
2023-10-06 13:15:24,629 epoch 4 - iter 120/152 - loss 0.24370889 - time (sec): 89.66 - samples/sec: 276.29 - lr: 0.000104 - momentum: 0.000000
2023-10-06 13:15:35,373 epoch 4 - iter 135/152 - loss 0.23999875 - time (sec): 100.41 - samples/sec: 275.42 - lr: 0.000102 - momentum: 0.000000
2023-10-06 13:15:46,458 epoch 4 - iter 150/152 - loss 0.23025240 - time (sec): 111.49 - samples/sec: 274.23 - lr: 0.000101 - momentum: 0.000000
2023-10-06 13:15:47,939 ----------------------------------------------------------------------------------------------------
2023-10-06 13:15:47,940 EPOCH 4 done: loss 0.2287 - lr: 0.000101
2023-10-06 13:15:56,008 DEV : loss 0.2277979999780655 - f1-score (micro avg)  0.7074
2023-10-06 13:15:56,016 saving best model
2023-10-06 13:16:00,368 ----------------------------------------------------------------------------------------------------
2023-10-06 13:16:11,445 epoch 5 - iter 15/152 - loss 0.12246111 - time (sec): 11.08 - samples/sec: 276.56 - lr: 0.000099 - momentum: 0.000000
2023-10-06 13:16:22,448 epoch 5 - iter 30/152 - loss 0.15322928 - time (sec): 22.08 - samples/sec: 273.43 - lr: 0.000097 - momentum: 0.000000
2023-10-06 13:16:34,190 epoch 5 - iter 45/152 - loss 0.15417556 - time (sec): 33.82 - samples/sec: 273.18 - lr: 0.000095 - momentum: 0.000000
2023-10-06 13:16:45,527 epoch 5 - iter 60/152 - loss 0.16403261 - time (sec): 45.16 - samples/sec: 274.29 - lr: 0.000094 - momentum: 0.000000
2023-10-06 13:16:56,764 epoch 5 - iter 75/152 - loss 0.16365678 - time (sec): 56.39 - samples/sec: 274.74 - lr: 0.000092 - momentum: 0.000000
2023-10-06 13:17:07,818 epoch 5 - iter 90/152 - loss 0.16139091 - time (sec): 67.45 - samples/sec: 273.62 - lr: 0.000091 - momentum: 0.000000
2023-10-06 13:17:18,564 epoch 5 - iter 105/152 - loss 0.15382459 - time (sec): 78.19 - samples/sec: 271.81 - lr: 0.000089 - momentum: 0.000000
2023-10-06 13:17:30,211 epoch 5 - iter 120/152 - loss 0.15240417 - time (sec): 89.84 - samples/sec: 273.78 - lr: 0.000087 - momentum: 0.000000
2023-10-06 13:17:41,001 epoch 5 - iter 135/152 - loss 0.15079292 - time (sec): 100.63 - samples/sec: 273.95 - lr: 0.000086 - momentum: 0.000000
2023-10-06 13:17:51,812 epoch 5 - iter 150/152 - loss 0.15298419 - time (sec): 111.44 - samples/sec: 274.10 - lr: 0.000084 - momentum: 0.000000
2023-10-06 13:17:53,395 ----------------------------------------------------------------------------------------------------
2023-10-06 13:17:53,395 EPOCH 5 done: loss 0.1519 - lr: 0.000084
2023-10-06 13:18:01,435 DEV : loss 0.17695870995521545 - f1-score (micro avg)  0.7258
2023-10-06 13:18:01,444 saving best model
2023-10-06 13:18:05,779 ----------------------------------------------------------------------------------------------------
2023-10-06 13:18:16,697 epoch 6 - iter 15/152 - loss 0.09270192 - time (sec): 10.92 - samples/sec: 271.43 - lr: 0.000082 - momentum: 0.000000
2023-10-06 13:18:27,716 epoch 6 - iter 30/152 - loss 0.11720667 - time (sec): 21.94 - samples/sec: 267.47 - lr: 0.000080 - momentum: 0.000000
2023-10-06 13:18:39,303 epoch 6 - iter 45/152 - loss 0.11175077 - time (sec): 33.52 - samples/sec: 270.35 - lr: 0.000079 - momentum: 0.000000
2023-10-06 13:18:50,781 epoch 6 - iter 60/152 - loss 0.11436783 - time (sec): 45.00 - samples/sec: 272.19 - lr: 0.000077 - momentum: 0.000000
2023-10-06 13:19:01,772 epoch 6 - iter 75/152 - loss 0.11082759 - time (sec): 55.99 - samples/sec: 271.26 - lr: 0.000076 - momentum: 0.000000
2023-10-06 13:19:13,070 epoch 6 - iter 90/152 - loss 0.10598764 - time (sec): 67.29 - samples/sec: 271.48 - lr: 0.000074 - momentum: 0.000000
2023-10-06 13:19:24,104 epoch 6 - iter 105/152 - loss 0.10720574 - time (sec): 78.32 - samples/sec: 270.72 - lr: 0.000072 - momentum: 0.000000
2023-10-06 13:19:35,155 epoch 6 - iter 120/152 - loss 0.11087016 - time (sec): 89.37 - samples/sec: 272.16 - lr: 0.000071 - momentum: 0.000000
2023-10-06 13:19:46,330 epoch 6 - iter 135/152 - loss 0.10716799 - time (sec): 100.55 - samples/sec: 273.19 - lr: 0.000069 - momentum: 0.000000
2023-10-06 13:19:57,472 epoch 6 - iter 150/152 - loss 0.10886342 - time (sec): 111.69 - samples/sec: 273.88 - lr: 0.000067 - momentum: 0.000000
2023-10-06 13:19:58,850 ----------------------------------------------------------------------------------------------------
2023-10-06 13:19:58,850 EPOCH 6 done: loss 0.1091 - lr: 0.000067
2023-10-06 13:20:06,860 DEV : loss 0.1589815467596054 - f1-score (micro avg)  0.7943
2023-10-06 13:20:06,868 saving best model
2023-10-06 13:20:11,225 ----------------------------------------------------------------------------------------------------
2023-10-06 13:20:22,447 epoch 7 - iter 15/152 - loss 0.12776069 - time (sec): 11.22 - samples/sec: 265.52 - lr: 0.000066 - momentum: 0.000000
2023-10-06 13:20:34,020 epoch 7 - iter 30/152 - loss 0.10877098 - time (sec): 22.79 - samples/sec: 273.51 - lr: 0.000064 - momentum: 0.000000
2023-10-06 13:20:44,843 epoch 7 - iter 45/152 - loss 0.09444140 - time (sec): 33.62 - samples/sec: 273.80 - lr: 0.000062 - momentum: 0.000000
2023-10-06 13:20:56,426 epoch 7 - iter 60/152 - loss 0.09188632 - time (sec): 45.20 - samples/sec: 275.76 - lr: 0.000061 - momentum: 0.000000
2023-10-06 13:21:07,589 epoch 7 - iter 75/152 - loss 0.09200131 - time (sec): 56.36 - samples/sec: 275.34 - lr: 0.000059 - momentum: 0.000000
2023-10-06 13:21:18,216 epoch 7 - iter 90/152 - loss 0.08825078 - time (sec): 66.99 - samples/sec: 272.46 - lr: 0.000057 - momentum: 0.000000
2023-10-06 13:21:28,988 epoch 7 - iter 105/152 - loss 0.08636856 - time (sec): 77.76 - samples/sec: 272.23 - lr: 0.000056 - momentum: 0.000000
2023-10-06 13:21:40,417 epoch 7 - iter 120/152 - loss 0.08420198 - time (sec): 89.19 - samples/sec: 273.10 - lr: 0.000054 - momentum: 0.000000
2023-10-06 13:21:51,929 epoch 7 - iter 135/152 - loss 0.08667895 - time (sec): 100.70 - samples/sec: 274.30 - lr: 0.000052 - momentum: 0.000000
2023-10-06 13:22:02,903 epoch 7 - iter 150/152 - loss 0.08327537 - time (sec): 111.68 - samples/sec: 274.30 - lr: 0.000051 - momentum: 0.000000
2023-10-06 13:22:04,222 ----------------------------------------------------------------------------------------------------
2023-10-06 13:22:04,223 EPOCH 7 done: loss 0.0830 - lr: 0.000051
2023-10-06 13:22:12,223 DEV : loss 0.14461469650268555 - f1-score (micro avg)  0.8189
2023-10-06 13:22:12,231 saving best model
2023-10-06 13:22:16,577 ----------------------------------------------------------------------------------------------------
2023-10-06 13:22:27,756 epoch 8 - iter 15/152 - loss 0.06828884 - time (sec): 11.18 - samples/sec: 281.09 - lr: 0.000049 - momentum: 0.000000
2023-10-06 13:22:39,406 epoch 8 - iter 30/152 - loss 0.07361348 - time (sec): 22.83 - samples/sec: 283.65 - lr: 0.000047 - momentum: 0.000000
2023-10-06 13:22:51,204 epoch 8 - iter 45/152 - loss 0.08124757 - time (sec): 34.63 - samples/sec: 283.46 - lr: 0.000046 - momentum: 0.000000
2023-10-06 13:23:02,401 epoch 8 - iter 60/152 - loss 0.07871064 - time (sec): 45.82 - samples/sec: 281.54 - lr: 0.000044 - momentum: 0.000000
2023-10-06 13:23:13,854 epoch 8 - iter 75/152 - loss 0.07422431 - time (sec): 57.28 - samples/sec: 280.31 - lr: 0.000042 - momentum: 0.000000
2023-10-06 13:23:24,913 epoch 8 - iter 90/152 - loss 0.07333499 - time (sec): 68.33 - samples/sec: 278.69 - lr: 0.000041 - momentum: 0.000000
2023-10-06 13:23:35,270 epoch 8 - iter 105/152 - loss 0.07143430 - time (sec): 78.69 - samples/sec: 276.28 - lr: 0.000039 - momentum: 0.000000
2023-10-06 13:23:46,331 epoch 8 - iter 120/152 - loss 0.06850039 - time (sec): 89.75 - samples/sec: 276.17 - lr: 0.000037 - momentum: 0.000000
2023-10-06 13:23:57,183 epoch 8 - iter 135/152 - loss 0.06792511 - time (sec): 100.60 - samples/sec: 275.50 - lr: 0.000036 - momentum: 0.000000
2023-10-06 13:24:07,826 epoch 8 - iter 150/152 - loss 0.06593987 - time (sec): 111.25 - samples/sec: 274.54 - lr: 0.000034 - momentum: 0.000000
2023-10-06 13:24:09,273 ----------------------------------------------------------------------------------------------------
2023-10-06 13:24:09,273 EPOCH 8 done: loss 0.0681 - lr: 0.000034
2023-10-06 13:24:17,123 DEV : loss 0.14291059970855713 - f1-score (micro avg)  0.807
2023-10-06 13:24:17,132 ----------------------------------------------------------------------------------------------------
2023-10-06 13:24:28,361 epoch 9 - iter 15/152 - loss 0.05127601 - time (sec): 11.23 - samples/sec: 282.41 - lr: 0.000032 - momentum: 0.000000
2023-10-06 13:24:38,888 epoch 9 - iter 30/152 - loss 0.05020165 - time (sec): 21.75 - samples/sec: 274.51 - lr: 0.000031 - momentum: 0.000000
2023-10-06 13:24:49,557 epoch 9 - iter 45/152 - loss 0.04825827 - time (sec): 32.42 - samples/sec: 272.33 - lr: 0.000029 - momentum: 0.000000
2023-10-06 13:25:01,312 epoch 9 - iter 60/152 - loss 0.05048857 - time (sec): 44.18 - samples/sec: 276.71 - lr: 0.000027 - momentum: 0.000000
2023-10-06 13:25:12,244 epoch 9 - iter 75/152 - loss 0.05688874 - time (sec): 55.11 - samples/sec: 275.16 - lr: 0.000026 - momentum: 0.000000
2023-10-06 13:25:23,129 epoch 9 - iter 90/152 - loss 0.05601915 - time (sec): 66.00 - samples/sec: 274.97 - lr: 0.000024 - momentum: 0.000000
2023-10-06 13:25:34,216 epoch 9 - iter 105/152 - loss 0.05737830 - time (sec): 77.08 - samples/sec: 276.08 - lr: 0.000022 - momentum: 0.000000
2023-10-06 13:25:45,044 epoch 9 - iter 120/152 - loss 0.05834607 - time (sec): 87.91 - samples/sec: 276.19 - lr: 0.000021 - momentum: 0.000000
2023-10-06 13:25:56,736 epoch 9 - iter 135/152 - loss 0.05753999 - time (sec): 99.60 - samples/sec: 276.94 - lr: 0.000019 - momentum: 0.000000
2023-10-06 13:26:07,630 epoch 9 - iter 150/152 - loss 0.05804039 - time (sec): 110.50 - samples/sec: 276.72 - lr: 0.000018 - momentum: 0.000000
2023-10-06 13:26:09,098 ----------------------------------------------------------------------------------------------------
2023-10-06 13:26:09,098 EPOCH 9 done: loss 0.0574 - lr: 0.000018
2023-10-06 13:26:16,886 DEV : loss 0.14050251245498657 - f1-score (micro avg)  0.8132
2023-10-06 13:26:16,894 ----------------------------------------------------------------------------------------------------
2023-10-06 13:26:28,153 epoch 10 - iter 15/152 - loss 0.04766949 - time (sec): 11.26 - samples/sec: 265.79 - lr: 0.000016 - momentum: 0.000000
2023-10-06 13:26:39,619 epoch 10 - iter 30/152 - loss 0.06175718 - time (sec): 22.72 - samples/sec: 269.68 - lr: 0.000014 - momentum: 0.000000
2023-10-06 13:26:50,158 epoch 10 - iter 45/152 - loss 0.05547825 - time (sec): 33.26 - samples/sec: 268.72 - lr: 0.000012 - momentum: 0.000000
2023-10-06 13:27:01,057 epoch 10 - iter 60/152 - loss 0.05417530 - time (sec): 44.16 - samples/sec: 268.78 - lr: 0.000011 - momentum: 0.000000
2023-10-06 13:27:12,421 epoch 10 - iter 75/152 - loss 0.05152617 - time (sec): 55.53 - samples/sec: 270.74 - lr: 0.000009 - momentum: 0.000000
2023-10-06 13:27:23,494 epoch 10 - iter 90/152 - loss 0.05355677 - time (sec): 66.60 - samples/sec: 272.15 - lr: 0.000008 - momentum: 0.000000
2023-10-06 13:27:34,374 epoch 10 - iter 105/152 - loss 0.05240993 - time (sec): 77.48 - samples/sec: 271.92 - lr: 0.000006 - momentum: 0.000000
2023-10-06 13:27:45,675 epoch 10 - iter 120/152 - loss 0.05321465 - time (sec): 88.78 - samples/sec: 273.51 - lr: 0.000004 - momentum: 0.000000
2023-10-06 13:27:57,530 epoch 10 - iter 135/152 - loss 0.05326204 - time (sec): 100.63 - samples/sec: 274.63 - lr: 0.000003 - momentum: 0.000000
2023-10-06 13:28:08,225 epoch 10 - iter 150/152 - loss 0.05277666 - time (sec): 111.33 - samples/sec: 274.78 - lr: 0.000001 - momentum: 0.000000
2023-10-06 13:28:09,594 ----------------------------------------------------------------------------------------------------
2023-10-06 13:28:09,594 EPOCH 10 done: loss 0.0527 - lr: 0.000001
2023-10-06 13:28:17,372 DEV : loss 0.13832153379917145 - f1-score (micro avg)  0.8217
2023-10-06 13:28:17,379 saving best model
2023-10-06 13:28:22,740 ----------------------------------------------------------------------------------------------------
2023-10-06 13:28:22,742 Loading model from best epoch ...
2023-10-06 13:28:25,333 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-06 13:28:32,461 
Results:
- F-score (micro) 0.7891
- F-score (macro) 0.4828
- Accuracy 0.6561

By class:
              precision    recall  f1-score   support

       scope     0.7205    0.7682    0.7436       151
        work     0.7155    0.8737    0.7867        95
        pers     0.8273    0.9479    0.8835        96
         loc     0.0000    0.0000    0.0000         3
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7494    0.8333    0.7891       348
   macro avg     0.4527    0.5180    0.4828       348
weighted avg     0.7362    0.8333    0.7811       348

2023-10-06 13:28:32,462 ----------------------------------------------------------------------------------------------------