File size: 25,044 Bytes
9e0bd9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
2023-10-06 23:58:06,919 ----------------------------------------------------------------------------------------------------
2023-10-06 23:58:06,920 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): T5LayerNorm()
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-06 23:58:06,920 ----------------------------------------------------------------------------------------------------
2023-10-06 23:58:06,921 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-06 23:58:06,921 ----------------------------------------------------------------------------------------------------
2023-10-06 23:58:06,921 Train:  1100 sentences
2023-10-06 23:58:06,921         (train_with_dev=False, train_with_test=False)
2023-10-06 23:58:06,921 ----------------------------------------------------------------------------------------------------
2023-10-06 23:58:06,921 Training Params:
2023-10-06 23:58:06,921  - learning_rate: "0.00015" 
2023-10-06 23:58:06,921  - mini_batch_size: "8"
2023-10-06 23:58:06,921  - max_epochs: "10"
2023-10-06 23:58:06,921  - shuffle: "True"
2023-10-06 23:58:06,921 ----------------------------------------------------------------------------------------------------
2023-10-06 23:58:06,921 Plugins:
2023-10-06 23:58:06,921  - TensorboardLogger
2023-10-06 23:58:06,921  - LinearScheduler | warmup_fraction: '0.1'
2023-10-06 23:58:06,921 ----------------------------------------------------------------------------------------------------
2023-10-06 23:58:06,921 Final evaluation on model from best epoch (best-model.pt)
2023-10-06 23:58:06,921  - metric: "('micro avg', 'f1-score')"
2023-10-06 23:58:06,921 ----------------------------------------------------------------------------------------------------
2023-10-06 23:58:06,922 Computation:
2023-10-06 23:58:06,922  - compute on device: cuda:0
2023-10-06 23:58:06,922  - embedding storage: none
2023-10-06 23:58:06,922 ----------------------------------------------------------------------------------------------------
2023-10-06 23:58:06,922 Model training base path: "hmbench-ajmc/de-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs8-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-3"
2023-10-06 23:58:06,922 ----------------------------------------------------------------------------------------------------
2023-10-06 23:58:06,922 ----------------------------------------------------------------------------------------------------
2023-10-06 23:58:06,922 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-06 23:58:15,893 epoch 1 - iter 13/138 - loss 3.20997788 - time (sec): 8.97 - samples/sec: 233.78 - lr: 0.000013 - momentum: 0.000000
2023-10-06 23:58:25,648 epoch 1 - iter 26/138 - loss 3.20472144 - time (sec): 18.73 - samples/sec: 230.97 - lr: 0.000027 - momentum: 0.000000
2023-10-06 23:58:36,233 epoch 1 - iter 39/138 - loss 3.19531578 - time (sec): 29.31 - samples/sec: 227.67 - lr: 0.000041 - momentum: 0.000000
2023-10-06 23:58:46,204 epoch 1 - iter 52/138 - loss 3.18014802 - time (sec): 39.28 - samples/sec: 225.73 - lr: 0.000055 - momentum: 0.000000
2023-10-06 23:58:56,396 epoch 1 - iter 65/138 - loss 3.15473401 - time (sec): 49.47 - samples/sec: 225.56 - lr: 0.000070 - momentum: 0.000000
2023-10-06 23:59:06,168 epoch 1 - iter 78/138 - loss 3.11326509 - time (sec): 59.24 - samples/sec: 224.98 - lr: 0.000084 - momentum: 0.000000
2023-10-06 23:59:15,689 epoch 1 - iter 91/138 - loss 3.05704736 - time (sec): 68.77 - samples/sec: 223.51 - lr: 0.000098 - momentum: 0.000000
2023-10-06 23:59:24,872 epoch 1 - iter 104/138 - loss 2.99443199 - time (sec): 77.95 - samples/sec: 223.03 - lr: 0.000112 - momentum: 0.000000
2023-10-06 23:59:34,511 epoch 1 - iter 117/138 - loss 2.92376879 - time (sec): 87.59 - samples/sec: 223.33 - lr: 0.000126 - momentum: 0.000000
2023-10-06 23:59:43,645 epoch 1 - iter 130/138 - loss 2.85131873 - time (sec): 96.72 - samples/sec: 222.46 - lr: 0.000140 - momentum: 0.000000
2023-10-06 23:59:49,432 ----------------------------------------------------------------------------------------------------
2023-10-06 23:59:49,432 EPOCH 1 done: loss 2.8007 - lr: 0.000140
2023-10-06 23:59:56,007 DEV : loss 1.8414502143859863 - f1-score (micro avg)  0.0
2023-10-06 23:59:56,013 ----------------------------------------------------------------------------------------------------
2023-10-07 00:00:05,813 epoch 2 - iter 13/138 - loss 1.74796308 - time (sec): 9.80 - samples/sec: 234.10 - lr: 0.000149 - momentum: 0.000000
2023-10-07 00:00:15,904 epoch 2 - iter 26/138 - loss 1.69062196 - time (sec): 19.89 - samples/sec: 229.01 - lr: 0.000147 - momentum: 0.000000
2023-10-07 00:00:25,731 epoch 2 - iter 39/138 - loss 1.58228938 - time (sec): 29.72 - samples/sec: 224.52 - lr: 0.000145 - momentum: 0.000000
2023-10-07 00:00:35,837 epoch 2 - iter 52/138 - loss 1.50218282 - time (sec): 39.82 - samples/sec: 225.80 - lr: 0.000144 - momentum: 0.000000
2023-10-07 00:00:45,485 epoch 2 - iter 65/138 - loss 1.43555808 - time (sec): 49.47 - samples/sec: 225.32 - lr: 0.000142 - momentum: 0.000000
2023-10-07 00:00:55,154 epoch 2 - iter 78/138 - loss 1.36493618 - time (sec): 59.14 - samples/sec: 224.58 - lr: 0.000141 - momentum: 0.000000
2023-10-07 00:01:04,473 epoch 2 - iter 91/138 - loss 1.32120162 - time (sec): 68.46 - samples/sec: 223.18 - lr: 0.000139 - momentum: 0.000000
2023-10-07 00:01:13,852 epoch 2 - iter 104/138 - loss 1.28137475 - time (sec): 77.84 - samples/sec: 223.12 - lr: 0.000138 - momentum: 0.000000
2023-10-07 00:01:23,150 epoch 2 - iter 117/138 - loss 1.23997101 - time (sec): 87.14 - samples/sec: 222.41 - lr: 0.000136 - momentum: 0.000000
2023-10-07 00:01:32,727 epoch 2 - iter 130/138 - loss 1.19564686 - time (sec): 96.71 - samples/sec: 222.85 - lr: 0.000134 - momentum: 0.000000
2023-10-07 00:01:38,269 ----------------------------------------------------------------------------------------------------
2023-10-07 00:01:38,269 EPOCH 2 done: loss 1.1702 - lr: 0.000134
2023-10-07 00:01:44,893 DEV : loss 0.8036181926727295 - f1-score (micro avg)  0.0
2023-10-07 00:01:44,898 ----------------------------------------------------------------------------------------------------
2023-10-07 00:01:54,649 epoch 3 - iter 13/138 - loss 0.79601481 - time (sec): 9.75 - samples/sec: 230.08 - lr: 0.000132 - momentum: 0.000000
2023-10-07 00:02:03,917 epoch 3 - iter 26/138 - loss 0.71860922 - time (sec): 19.02 - samples/sec: 226.58 - lr: 0.000130 - momentum: 0.000000
2023-10-07 00:02:14,025 epoch 3 - iter 39/138 - loss 0.67902768 - time (sec): 29.13 - samples/sec: 228.39 - lr: 0.000129 - momentum: 0.000000
2023-10-07 00:02:23,452 epoch 3 - iter 52/138 - loss 0.64466460 - time (sec): 38.55 - samples/sec: 225.52 - lr: 0.000127 - momentum: 0.000000
2023-10-07 00:02:33,711 epoch 3 - iter 65/138 - loss 0.61972971 - time (sec): 48.81 - samples/sec: 226.00 - lr: 0.000126 - momentum: 0.000000
2023-10-07 00:02:43,206 epoch 3 - iter 78/138 - loss 0.60093143 - time (sec): 58.31 - samples/sec: 224.88 - lr: 0.000124 - momentum: 0.000000
2023-10-07 00:02:53,074 epoch 3 - iter 91/138 - loss 0.58832989 - time (sec): 68.17 - samples/sec: 223.59 - lr: 0.000123 - momentum: 0.000000
2023-10-07 00:03:03,492 epoch 3 - iter 104/138 - loss 0.57081164 - time (sec): 78.59 - samples/sec: 225.11 - lr: 0.000121 - momentum: 0.000000
2023-10-07 00:03:12,285 epoch 3 - iter 117/138 - loss 0.55153490 - time (sec): 87.39 - samples/sec: 223.10 - lr: 0.000119 - momentum: 0.000000
2023-10-07 00:03:21,654 epoch 3 - iter 130/138 - loss 0.55009589 - time (sec): 96.75 - samples/sec: 223.33 - lr: 0.000118 - momentum: 0.000000
2023-10-07 00:03:26,998 ----------------------------------------------------------------------------------------------------
2023-10-07 00:03:26,998 EPOCH 3 done: loss 0.5496 - lr: 0.000118
2023-10-07 00:03:33,633 DEV : loss 0.41901326179504395 - f1-score (micro avg)  0.6189
2023-10-07 00:03:33,639 saving best model
2023-10-07 00:03:34,529 ----------------------------------------------------------------------------------------------------
2023-10-07 00:03:44,082 epoch 4 - iter 13/138 - loss 0.47862307 - time (sec): 9.55 - samples/sec: 228.15 - lr: 0.000115 - momentum: 0.000000
2023-10-07 00:03:53,659 epoch 4 - iter 26/138 - loss 0.44598639 - time (sec): 19.13 - samples/sec: 229.40 - lr: 0.000114 - momentum: 0.000000
2023-10-07 00:04:03,615 epoch 4 - iter 39/138 - loss 0.40805908 - time (sec): 29.08 - samples/sec: 226.86 - lr: 0.000112 - momentum: 0.000000
2023-10-07 00:04:12,745 epoch 4 - iter 52/138 - loss 0.39671079 - time (sec): 38.21 - samples/sec: 223.21 - lr: 0.000111 - momentum: 0.000000
2023-10-07 00:04:22,686 epoch 4 - iter 65/138 - loss 0.37971756 - time (sec): 48.16 - samples/sec: 223.51 - lr: 0.000109 - momentum: 0.000000
2023-10-07 00:04:33,000 epoch 4 - iter 78/138 - loss 0.37512928 - time (sec): 58.47 - samples/sec: 225.25 - lr: 0.000107 - momentum: 0.000000
2023-10-07 00:04:42,332 epoch 4 - iter 91/138 - loss 0.36689010 - time (sec): 67.80 - samples/sec: 223.92 - lr: 0.000106 - momentum: 0.000000
2023-10-07 00:04:51,780 epoch 4 - iter 104/138 - loss 0.35327140 - time (sec): 77.25 - samples/sec: 223.11 - lr: 0.000104 - momentum: 0.000000
2023-10-07 00:05:01,251 epoch 4 - iter 117/138 - loss 0.34186476 - time (sec): 86.72 - samples/sec: 221.69 - lr: 0.000103 - momentum: 0.000000
2023-10-07 00:05:10,705 epoch 4 - iter 130/138 - loss 0.33471278 - time (sec): 96.17 - samples/sec: 222.37 - lr: 0.000101 - momentum: 0.000000
2023-10-07 00:05:16,696 ----------------------------------------------------------------------------------------------------
2023-10-07 00:05:16,697 EPOCH 4 done: loss 0.3341 - lr: 0.000101
2023-10-07 00:05:23,337 DEV : loss 0.27274981141090393 - f1-score (micro avg)  0.6831
2023-10-07 00:05:23,343 saving best model
2023-10-07 00:05:24,266 ----------------------------------------------------------------------------------------------------
2023-10-07 00:05:33,970 epoch 5 - iter 13/138 - loss 0.21509147 - time (sec): 9.70 - samples/sec: 214.69 - lr: 0.000099 - momentum: 0.000000
2023-10-07 00:05:43,649 epoch 5 - iter 26/138 - loss 0.23282051 - time (sec): 19.38 - samples/sec: 222.39 - lr: 0.000097 - momentum: 0.000000
2023-10-07 00:05:53,176 epoch 5 - iter 39/138 - loss 0.22838521 - time (sec): 28.91 - samples/sec: 222.12 - lr: 0.000096 - momentum: 0.000000
2023-10-07 00:06:02,488 epoch 5 - iter 52/138 - loss 0.23672214 - time (sec): 38.22 - samples/sec: 220.46 - lr: 0.000094 - momentum: 0.000000
2023-10-07 00:06:12,116 epoch 5 - iter 65/138 - loss 0.23516913 - time (sec): 47.85 - samples/sec: 220.34 - lr: 0.000092 - momentum: 0.000000
2023-10-07 00:06:21,540 epoch 5 - iter 78/138 - loss 0.23287437 - time (sec): 57.27 - samples/sec: 219.06 - lr: 0.000091 - momentum: 0.000000
2023-10-07 00:06:31,810 epoch 5 - iter 91/138 - loss 0.22804770 - time (sec): 67.54 - samples/sec: 221.77 - lr: 0.000089 - momentum: 0.000000
2023-10-07 00:06:41,656 epoch 5 - iter 104/138 - loss 0.22227824 - time (sec): 77.39 - samples/sec: 221.43 - lr: 0.000088 - momentum: 0.000000
2023-10-07 00:06:51,004 epoch 5 - iter 117/138 - loss 0.22083195 - time (sec): 86.74 - samples/sec: 221.42 - lr: 0.000086 - momentum: 0.000000
2023-10-07 00:07:00,641 epoch 5 - iter 130/138 - loss 0.22031519 - time (sec): 96.37 - samples/sec: 221.70 - lr: 0.000085 - momentum: 0.000000
2023-10-07 00:07:06,697 ----------------------------------------------------------------------------------------------------
2023-10-07 00:07:06,697 EPOCH 5 done: loss 0.2182 - lr: 0.000085
2023-10-07 00:07:13,359 DEV : loss 0.19381575286388397 - f1-score (micro avg)  0.7876
2023-10-07 00:07:13,364 saving best model
2023-10-07 00:07:14,290 ----------------------------------------------------------------------------------------------------
2023-10-07 00:07:24,032 epoch 6 - iter 13/138 - loss 0.17702033 - time (sec): 9.74 - samples/sec: 228.83 - lr: 0.000082 - momentum: 0.000000
2023-10-07 00:07:32,974 epoch 6 - iter 26/138 - loss 0.19667121 - time (sec): 18.68 - samples/sec: 224.05 - lr: 0.000080 - momentum: 0.000000
2023-10-07 00:07:42,589 epoch 6 - iter 39/138 - loss 0.18090163 - time (sec): 28.30 - samples/sec: 223.52 - lr: 0.000079 - momentum: 0.000000
2023-10-07 00:07:51,551 epoch 6 - iter 52/138 - loss 0.17305993 - time (sec): 37.26 - samples/sec: 220.13 - lr: 0.000077 - momentum: 0.000000
2023-10-07 00:08:01,459 epoch 6 - iter 65/138 - loss 0.16189015 - time (sec): 47.17 - samples/sec: 220.38 - lr: 0.000076 - momentum: 0.000000
2023-10-07 00:08:11,960 epoch 6 - iter 78/138 - loss 0.16533049 - time (sec): 57.67 - samples/sec: 220.55 - lr: 0.000074 - momentum: 0.000000
2023-10-07 00:08:21,177 epoch 6 - iter 91/138 - loss 0.16497222 - time (sec): 66.89 - samples/sec: 220.18 - lr: 0.000073 - momentum: 0.000000
2023-10-07 00:08:31,048 epoch 6 - iter 104/138 - loss 0.16785639 - time (sec): 76.76 - samples/sec: 220.79 - lr: 0.000071 - momentum: 0.000000
2023-10-07 00:08:41,114 epoch 6 - iter 117/138 - loss 0.16125224 - time (sec): 86.82 - samples/sec: 221.60 - lr: 0.000070 - momentum: 0.000000
2023-10-07 00:08:50,831 epoch 6 - iter 130/138 - loss 0.15620235 - time (sec): 96.54 - samples/sec: 222.86 - lr: 0.000068 - momentum: 0.000000
2023-10-07 00:08:56,555 ----------------------------------------------------------------------------------------------------
2023-10-07 00:08:56,555 EPOCH 6 done: loss 0.1530 - lr: 0.000068
2023-10-07 00:09:03,175 DEV : loss 0.1629297286272049 - f1-score (micro avg)  0.8051
2023-10-07 00:09:03,180 saving best model
2023-10-07 00:09:04,107 ----------------------------------------------------------------------------------------------------
2023-10-07 00:09:12,912 epoch 7 - iter 13/138 - loss 0.13798370 - time (sec): 8.80 - samples/sec: 217.30 - lr: 0.000065 - momentum: 0.000000
2023-10-07 00:09:23,205 epoch 7 - iter 26/138 - loss 0.11167070 - time (sec): 19.10 - samples/sec: 220.67 - lr: 0.000064 - momentum: 0.000000
2023-10-07 00:09:32,951 epoch 7 - iter 39/138 - loss 0.11037866 - time (sec): 28.84 - samples/sec: 224.01 - lr: 0.000062 - momentum: 0.000000
2023-10-07 00:09:42,557 epoch 7 - iter 52/138 - loss 0.10794981 - time (sec): 38.45 - samples/sec: 225.37 - lr: 0.000061 - momentum: 0.000000
2023-10-07 00:09:52,326 epoch 7 - iter 65/138 - loss 0.11452936 - time (sec): 48.22 - samples/sec: 227.03 - lr: 0.000059 - momentum: 0.000000
2023-10-07 00:10:02,256 epoch 7 - iter 78/138 - loss 0.11784007 - time (sec): 58.15 - samples/sec: 228.28 - lr: 0.000058 - momentum: 0.000000
2023-10-07 00:10:11,305 epoch 7 - iter 91/138 - loss 0.11342626 - time (sec): 67.20 - samples/sec: 225.42 - lr: 0.000056 - momentum: 0.000000
2023-10-07 00:10:21,056 epoch 7 - iter 104/138 - loss 0.11570249 - time (sec): 76.95 - samples/sec: 225.10 - lr: 0.000054 - momentum: 0.000000
2023-10-07 00:10:30,445 epoch 7 - iter 117/138 - loss 0.11799732 - time (sec): 86.34 - samples/sec: 224.16 - lr: 0.000053 - momentum: 0.000000
2023-10-07 00:10:40,216 epoch 7 - iter 130/138 - loss 0.11127819 - time (sec): 96.11 - samples/sec: 223.42 - lr: 0.000051 - momentum: 0.000000
2023-10-07 00:10:45,986 ----------------------------------------------------------------------------------------------------
2023-10-07 00:10:45,987 EPOCH 7 done: loss 0.1117 - lr: 0.000051
2023-10-07 00:10:52,599 DEV : loss 0.14532138407230377 - f1-score (micro avg)  0.8392
2023-10-07 00:10:52,604 saving best model
2023-10-07 00:10:53,522 ----------------------------------------------------------------------------------------------------
2023-10-07 00:11:02,630 epoch 8 - iter 13/138 - loss 0.13064244 - time (sec): 9.11 - samples/sec: 224.69 - lr: 0.000049 - momentum: 0.000000
2023-10-07 00:11:12,280 epoch 8 - iter 26/138 - loss 0.10750352 - time (sec): 18.76 - samples/sec: 224.20 - lr: 0.000047 - momentum: 0.000000
2023-10-07 00:11:21,372 epoch 8 - iter 39/138 - loss 0.09435921 - time (sec): 27.85 - samples/sec: 223.50 - lr: 0.000046 - momentum: 0.000000
2023-10-07 00:11:30,587 epoch 8 - iter 52/138 - loss 0.09770834 - time (sec): 37.06 - samples/sec: 223.89 - lr: 0.000044 - momentum: 0.000000
2023-10-07 00:11:40,400 epoch 8 - iter 65/138 - loss 0.09501205 - time (sec): 46.88 - samples/sec: 223.29 - lr: 0.000043 - momentum: 0.000000
2023-10-07 00:11:50,465 epoch 8 - iter 78/138 - loss 0.09375228 - time (sec): 56.94 - samples/sec: 224.74 - lr: 0.000041 - momentum: 0.000000
2023-10-07 00:12:00,390 epoch 8 - iter 91/138 - loss 0.09337249 - time (sec): 66.87 - samples/sec: 224.10 - lr: 0.000039 - momentum: 0.000000
2023-10-07 00:12:11,173 epoch 8 - iter 104/138 - loss 0.09232996 - time (sec): 77.65 - samples/sec: 224.60 - lr: 0.000038 - momentum: 0.000000
2023-10-07 00:12:20,962 epoch 8 - iter 117/138 - loss 0.09141142 - time (sec): 87.44 - samples/sec: 224.66 - lr: 0.000036 - momentum: 0.000000
2023-10-07 00:12:29,593 epoch 8 - iter 130/138 - loss 0.09362675 - time (sec): 96.07 - samples/sec: 223.43 - lr: 0.000035 - momentum: 0.000000
2023-10-07 00:12:35,325 ----------------------------------------------------------------------------------------------------
2023-10-07 00:12:35,325 EPOCH 8 done: loss 0.0911 - lr: 0.000035
2023-10-07 00:12:41,938 DEV : loss 0.13669075071811676 - f1-score (micro avg)  0.8599
2023-10-07 00:12:41,943 saving best model
2023-10-07 00:12:42,843 ----------------------------------------------------------------------------------------------------
2023-10-07 00:12:51,666 epoch 9 - iter 13/138 - loss 0.08601223 - time (sec): 8.82 - samples/sec: 217.19 - lr: 0.000032 - momentum: 0.000000
2023-10-07 00:13:01,354 epoch 9 - iter 26/138 - loss 0.08520771 - time (sec): 18.51 - samples/sec: 223.61 - lr: 0.000031 - momentum: 0.000000
2023-10-07 00:13:10,900 epoch 9 - iter 39/138 - loss 0.09322572 - time (sec): 28.06 - samples/sec: 224.70 - lr: 0.000029 - momentum: 0.000000
2023-10-07 00:13:19,481 epoch 9 - iter 52/138 - loss 0.09083107 - time (sec): 36.64 - samples/sec: 221.50 - lr: 0.000027 - momentum: 0.000000
2023-10-07 00:13:29,106 epoch 9 - iter 65/138 - loss 0.08689703 - time (sec): 46.26 - samples/sec: 222.13 - lr: 0.000026 - momentum: 0.000000
2023-10-07 00:13:39,273 epoch 9 - iter 78/138 - loss 0.08276096 - time (sec): 56.43 - samples/sec: 223.04 - lr: 0.000024 - momentum: 0.000000
2023-10-07 00:13:49,188 epoch 9 - iter 91/138 - loss 0.08174285 - time (sec): 66.34 - samples/sec: 225.01 - lr: 0.000023 - momentum: 0.000000
2023-10-07 00:13:58,803 epoch 9 - iter 104/138 - loss 0.07693049 - time (sec): 75.96 - samples/sec: 225.06 - lr: 0.000021 - momentum: 0.000000
2023-10-07 00:14:08,910 epoch 9 - iter 117/138 - loss 0.07661784 - time (sec): 86.07 - samples/sec: 225.37 - lr: 0.000020 - momentum: 0.000000
2023-10-07 00:14:17,990 epoch 9 - iter 130/138 - loss 0.07746393 - time (sec): 95.15 - samples/sec: 224.71 - lr: 0.000018 - momentum: 0.000000
2023-10-07 00:14:23,877 ----------------------------------------------------------------------------------------------------
2023-10-07 00:14:23,877 EPOCH 9 done: loss 0.0779 - lr: 0.000018
2023-10-07 00:14:30,458 DEV : loss 0.13400736451148987 - f1-score (micro avg)  0.8592
2023-10-07 00:14:30,463 ----------------------------------------------------------------------------------------------------
2023-10-07 00:14:39,776 epoch 10 - iter 13/138 - loss 0.06687981 - time (sec): 9.31 - samples/sec: 218.12 - lr: 0.000016 - momentum: 0.000000
2023-10-07 00:14:49,992 epoch 10 - iter 26/138 - loss 0.06043895 - time (sec): 19.53 - samples/sec: 218.52 - lr: 0.000014 - momentum: 0.000000
2023-10-07 00:14:59,147 epoch 10 - iter 39/138 - loss 0.06901592 - time (sec): 28.68 - samples/sec: 218.70 - lr: 0.000012 - momentum: 0.000000
2023-10-07 00:15:08,154 epoch 10 - iter 52/138 - loss 0.07029173 - time (sec): 37.69 - samples/sec: 218.65 - lr: 0.000011 - momentum: 0.000000
2023-10-07 00:15:17,964 epoch 10 - iter 65/138 - loss 0.07063126 - time (sec): 47.50 - samples/sec: 221.52 - lr: 0.000009 - momentum: 0.000000
2023-10-07 00:15:27,378 epoch 10 - iter 78/138 - loss 0.06996984 - time (sec): 56.91 - samples/sec: 223.08 - lr: 0.000008 - momentum: 0.000000
2023-10-07 00:15:36,413 epoch 10 - iter 91/138 - loss 0.07072405 - time (sec): 65.95 - samples/sec: 222.75 - lr: 0.000006 - momentum: 0.000000
2023-10-07 00:15:46,064 epoch 10 - iter 104/138 - loss 0.07111993 - time (sec): 75.60 - samples/sec: 223.24 - lr: 0.000005 - momentum: 0.000000
2023-10-07 00:15:55,612 epoch 10 - iter 117/138 - loss 0.07174694 - time (sec): 85.15 - samples/sec: 223.59 - lr: 0.000003 - momentum: 0.000000
2023-10-07 00:16:05,752 epoch 10 - iter 130/138 - loss 0.07323074 - time (sec): 95.29 - samples/sec: 225.30 - lr: 0.000001 - momentum: 0.000000
2023-10-07 00:16:11,303 ----------------------------------------------------------------------------------------------------
2023-10-07 00:16:11,303 EPOCH 10 done: loss 0.0722 - lr: 0.000001
2023-10-07 00:16:17,864 DEV : loss 0.13299323618412018 - f1-score (micro avg)  0.8582
2023-10-07 00:16:18,676 ----------------------------------------------------------------------------------------------------
2023-10-07 00:16:18,678 Loading model from best epoch ...
2023-10-07 00:16:21,954 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-07 00:16:29,045 
Results:
- F-score (micro) 0.8915
- F-score (macro) 0.5282
- Accuracy 0.8254

By class:
              precision    recall  f1-score   support

       scope     0.9016    0.9375    0.9192       176
        pers     0.9084    0.9297    0.9189       128
        work     0.7821    0.8243    0.8026        74
      object     0.0000    0.0000    0.0000         2
         loc     0.0000    0.0000    0.0000         2

   micro avg     0.8801    0.9031    0.8915       382
   macro avg     0.5184    0.5383    0.5282       382
weighted avg     0.8713    0.9031    0.8869       382

2023-10-07 00:16:29,045 ----------------------------------------------------------------------------------------------------