File size: 25,106 Bytes
1e5ec8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
2023-10-06 21:01:36,944 ----------------------------------------------------------------------------------------------------
2023-10-06 21:01:36,946 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): T5LayerNorm()
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-06 21:01:36,946 ----------------------------------------------------------------------------------------------------
2023-10-06 21:01:36,946 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-06 21:01:36,946 ----------------------------------------------------------------------------------------------------
2023-10-06 21:01:36,946 Train:  1100 sentences
2023-10-06 21:01:36,946         (train_with_dev=False, train_with_test=False)
2023-10-06 21:01:36,946 ----------------------------------------------------------------------------------------------------
2023-10-06 21:01:36,946 Training Params:
2023-10-06 21:01:36,946  - learning_rate: "0.00016" 
2023-10-06 21:01:36,946  - mini_batch_size: "4"
2023-10-06 21:01:36,946  - max_epochs: "10"
2023-10-06 21:01:36,946  - shuffle: "True"
2023-10-06 21:01:36,946 ----------------------------------------------------------------------------------------------------
2023-10-06 21:01:36,946 Plugins:
2023-10-06 21:01:36,946  - TensorboardLogger
2023-10-06 21:01:36,946  - LinearScheduler | warmup_fraction: '0.1'
2023-10-06 21:01:36,946 ----------------------------------------------------------------------------------------------------
2023-10-06 21:01:36,947 Final evaluation on model from best epoch (best-model.pt)
2023-10-06 21:01:36,947  - metric: "('micro avg', 'f1-score')"
2023-10-06 21:01:36,947 ----------------------------------------------------------------------------------------------------
2023-10-06 21:01:36,947 Computation:
2023-10-06 21:01:36,947  - compute on device: cuda:0
2023-10-06 21:01:36,947  - embedding storage: none
2023-10-06 21:01:36,947 ----------------------------------------------------------------------------------------------------
2023-10-06 21:01:36,947 Model training base path: "hmbench-ajmc/de-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-1"
2023-10-06 21:01:36,947 ----------------------------------------------------------------------------------------------------
2023-10-06 21:01:36,947 ----------------------------------------------------------------------------------------------------
2023-10-06 21:01:36,947 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-06 21:01:47,402 epoch 1 - iter 27/275 - loss 3.22833207 - time (sec): 10.45 - samples/sec: 211.40 - lr: 0.000015 - momentum: 0.000000
2023-10-06 21:01:58,525 epoch 1 - iter 54/275 - loss 3.21740774 - time (sec): 21.58 - samples/sec: 203.64 - lr: 0.000031 - momentum: 0.000000
2023-10-06 21:02:09,265 epoch 1 - iter 81/275 - loss 3.19662009 - time (sec): 32.32 - samples/sec: 202.99 - lr: 0.000047 - momentum: 0.000000
2023-10-06 21:02:19,769 epoch 1 - iter 108/275 - loss 3.14572703 - time (sec): 42.82 - samples/sec: 202.17 - lr: 0.000062 - momentum: 0.000000
2023-10-06 21:02:31,381 epoch 1 - iter 135/275 - loss 3.04591352 - time (sec): 54.43 - samples/sec: 204.64 - lr: 0.000078 - momentum: 0.000000
2023-10-06 21:02:42,609 epoch 1 - iter 162/275 - loss 2.93792612 - time (sec): 65.66 - samples/sec: 205.18 - lr: 0.000094 - momentum: 0.000000
2023-10-06 21:02:53,822 epoch 1 - iter 189/275 - loss 2.82739079 - time (sec): 76.87 - samples/sec: 205.84 - lr: 0.000109 - momentum: 0.000000
2023-10-06 21:03:04,383 epoch 1 - iter 216/275 - loss 2.71282571 - time (sec): 87.44 - samples/sec: 206.16 - lr: 0.000125 - momentum: 0.000000
2023-10-06 21:03:15,131 epoch 1 - iter 243/275 - loss 2.59134021 - time (sec): 98.18 - samples/sec: 206.34 - lr: 0.000141 - momentum: 0.000000
2023-10-06 21:03:25,168 epoch 1 - iter 270/275 - loss 2.48706332 - time (sec): 108.22 - samples/sec: 205.82 - lr: 0.000157 - momentum: 0.000000
2023-10-06 21:03:27,515 ----------------------------------------------------------------------------------------------------
2023-10-06 21:03:27,515 EPOCH 1 done: loss 2.4613 - lr: 0.000157
2023-10-06 21:03:34,060 DEV : loss 1.1231565475463867 - f1-score (micro avg)  0.0
2023-10-06 21:03:34,066 ----------------------------------------------------------------------------------------------------
2023-10-06 21:03:44,652 epoch 2 - iter 27/275 - loss 1.02744112 - time (sec): 10.59 - samples/sec: 207.93 - lr: 0.000158 - momentum: 0.000000
2023-10-06 21:03:55,710 epoch 2 - iter 54/275 - loss 0.91058745 - time (sec): 21.64 - samples/sec: 206.49 - lr: 0.000157 - momentum: 0.000000
2023-10-06 21:04:06,143 epoch 2 - iter 81/275 - loss 0.91519657 - time (sec): 32.08 - samples/sec: 205.36 - lr: 0.000155 - momentum: 0.000000
2023-10-06 21:04:16,151 epoch 2 - iter 108/275 - loss 0.86737118 - time (sec): 42.08 - samples/sec: 202.45 - lr: 0.000153 - momentum: 0.000000
2023-10-06 21:04:26,497 epoch 2 - iter 135/275 - loss 0.84523607 - time (sec): 52.43 - samples/sec: 201.60 - lr: 0.000151 - momentum: 0.000000
2023-10-06 21:04:37,903 epoch 2 - iter 162/275 - loss 0.80302043 - time (sec): 63.84 - samples/sec: 203.27 - lr: 0.000150 - momentum: 0.000000
2023-10-06 21:04:49,320 epoch 2 - iter 189/275 - loss 0.76259034 - time (sec): 75.25 - samples/sec: 204.92 - lr: 0.000148 - momentum: 0.000000
2023-10-06 21:05:00,257 epoch 2 - iter 216/275 - loss 0.72720466 - time (sec): 86.19 - samples/sec: 205.44 - lr: 0.000146 - momentum: 0.000000
2023-10-06 21:05:11,177 epoch 2 - iter 243/275 - loss 0.69492358 - time (sec): 97.11 - samples/sec: 206.05 - lr: 0.000144 - momentum: 0.000000
2023-10-06 21:05:22,007 epoch 2 - iter 270/275 - loss 0.67160554 - time (sec): 107.94 - samples/sec: 206.52 - lr: 0.000143 - momentum: 0.000000
2023-10-06 21:05:24,008 ----------------------------------------------------------------------------------------------------
2023-10-06 21:05:24,008 EPOCH 2 done: loss 0.6684 - lr: 0.000143
2023-10-06 21:05:30,641 DEV : loss 0.39727556705474854 - f1-score (micro avg)  0.3715
2023-10-06 21:05:30,646 saving best model
2023-10-06 21:05:31,694 ----------------------------------------------------------------------------------------------------
2023-10-06 21:05:42,313 epoch 3 - iter 27/275 - loss 0.37832761 - time (sec): 10.62 - samples/sec: 208.72 - lr: 0.000141 - momentum: 0.000000
2023-10-06 21:05:53,709 epoch 3 - iter 54/275 - loss 0.35655984 - time (sec): 22.01 - samples/sec: 212.06 - lr: 0.000139 - momentum: 0.000000
2023-10-06 21:06:04,671 epoch 3 - iter 81/275 - loss 0.35093005 - time (sec): 32.98 - samples/sec: 212.83 - lr: 0.000137 - momentum: 0.000000
2023-10-06 21:06:15,850 epoch 3 - iter 108/275 - loss 0.34679625 - time (sec): 44.15 - samples/sec: 212.59 - lr: 0.000135 - momentum: 0.000000
2023-10-06 21:06:26,372 epoch 3 - iter 135/275 - loss 0.33706333 - time (sec): 54.68 - samples/sec: 211.41 - lr: 0.000134 - momentum: 0.000000
2023-10-06 21:06:37,264 epoch 3 - iter 162/275 - loss 0.33137490 - time (sec): 65.57 - samples/sec: 210.90 - lr: 0.000132 - momentum: 0.000000
2023-10-06 21:06:47,375 epoch 3 - iter 189/275 - loss 0.31978246 - time (sec): 75.68 - samples/sec: 208.92 - lr: 0.000130 - momentum: 0.000000
2023-10-06 21:06:57,740 epoch 3 - iter 216/275 - loss 0.30780358 - time (sec): 86.04 - samples/sec: 207.17 - lr: 0.000128 - momentum: 0.000000
2023-10-06 21:07:09,451 epoch 3 - iter 243/275 - loss 0.29879871 - time (sec): 97.75 - samples/sec: 207.83 - lr: 0.000127 - momentum: 0.000000
2023-10-06 21:07:19,646 epoch 3 - iter 270/275 - loss 0.28697615 - time (sec): 107.95 - samples/sec: 206.64 - lr: 0.000125 - momentum: 0.000000
2023-10-06 21:07:21,888 ----------------------------------------------------------------------------------------------------
2023-10-06 21:07:21,888 EPOCH 3 done: loss 0.2850 - lr: 0.000125
2023-10-06 21:07:28,577 DEV : loss 0.2045798897743225 - f1-score (micro avg)  0.7546
2023-10-06 21:07:28,583 saving best model
2023-10-06 21:07:32,937 ----------------------------------------------------------------------------------------------------
2023-10-06 21:07:44,862 epoch 4 - iter 27/275 - loss 0.16488031 - time (sec): 11.92 - samples/sec: 218.64 - lr: 0.000123 - momentum: 0.000000
2023-10-06 21:07:55,513 epoch 4 - iter 54/275 - loss 0.14918728 - time (sec): 22.58 - samples/sec: 211.07 - lr: 0.000121 - momentum: 0.000000
2023-10-06 21:08:05,888 epoch 4 - iter 81/275 - loss 0.15702343 - time (sec): 32.95 - samples/sec: 205.64 - lr: 0.000119 - momentum: 0.000000
2023-10-06 21:08:16,549 epoch 4 - iter 108/275 - loss 0.16021996 - time (sec): 43.61 - samples/sec: 206.87 - lr: 0.000118 - momentum: 0.000000
2023-10-06 21:08:27,748 epoch 4 - iter 135/275 - loss 0.16143446 - time (sec): 54.81 - samples/sec: 208.91 - lr: 0.000116 - momentum: 0.000000
2023-10-06 21:08:38,232 epoch 4 - iter 162/275 - loss 0.15574263 - time (sec): 65.29 - samples/sec: 207.57 - lr: 0.000114 - momentum: 0.000000
2023-10-06 21:08:49,169 epoch 4 - iter 189/275 - loss 0.15197121 - time (sec): 76.23 - samples/sec: 207.38 - lr: 0.000112 - momentum: 0.000000
2023-10-06 21:08:59,538 epoch 4 - iter 216/275 - loss 0.15516941 - time (sec): 86.60 - samples/sec: 207.22 - lr: 0.000111 - momentum: 0.000000
2023-10-06 21:09:10,047 epoch 4 - iter 243/275 - loss 0.15034681 - time (sec): 97.11 - samples/sec: 207.33 - lr: 0.000109 - momentum: 0.000000
2023-10-06 21:09:20,913 epoch 4 - iter 270/275 - loss 0.14712355 - time (sec): 107.98 - samples/sec: 206.53 - lr: 0.000107 - momentum: 0.000000
2023-10-06 21:09:23,020 ----------------------------------------------------------------------------------------------------
2023-10-06 21:09:23,020 EPOCH 4 done: loss 0.1461 - lr: 0.000107
2023-10-06 21:09:29,701 DEV : loss 0.14199717342853546 - f1-score (micro avg)  0.8412
2023-10-06 21:09:29,706 saving best model
2023-10-06 21:09:34,058 ----------------------------------------------------------------------------------------------------
2023-10-06 21:09:44,862 epoch 5 - iter 27/275 - loss 0.11122000 - time (sec): 10.80 - samples/sec: 202.36 - lr: 0.000105 - momentum: 0.000000
2023-10-06 21:09:55,555 epoch 5 - iter 54/275 - loss 0.09992236 - time (sec): 21.50 - samples/sec: 203.11 - lr: 0.000103 - momentum: 0.000000
2023-10-06 21:10:05,993 epoch 5 - iter 81/275 - loss 0.10665216 - time (sec): 31.93 - samples/sec: 204.89 - lr: 0.000102 - momentum: 0.000000
2023-10-06 21:10:17,851 epoch 5 - iter 108/275 - loss 0.09964466 - time (sec): 43.79 - samples/sec: 208.40 - lr: 0.000100 - momentum: 0.000000
2023-10-06 21:10:29,819 epoch 5 - iter 135/275 - loss 0.09494942 - time (sec): 55.76 - samples/sec: 209.35 - lr: 0.000098 - momentum: 0.000000
2023-10-06 21:10:40,729 epoch 5 - iter 162/275 - loss 0.09497234 - time (sec): 66.67 - samples/sec: 207.68 - lr: 0.000096 - momentum: 0.000000
2023-10-06 21:10:51,626 epoch 5 - iter 189/275 - loss 0.09115680 - time (sec): 77.57 - samples/sec: 207.60 - lr: 0.000095 - momentum: 0.000000
2023-10-06 21:11:02,172 epoch 5 - iter 216/275 - loss 0.09154943 - time (sec): 88.11 - samples/sec: 208.87 - lr: 0.000093 - momentum: 0.000000
2023-10-06 21:11:12,251 epoch 5 - iter 243/275 - loss 0.09193531 - time (sec): 98.19 - samples/sec: 207.31 - lr: 0.000091 - momentum: 0.000000
2023-10-06 21:11:22,446 epoch 5 - iter 270/275 - loss 0.08842455 - time (sec): 108.39 - samples/sec: 206.77 - lr: 0.000089 - momentum: 0.000000
2023-10-06 21:11:24,284 ----------------------------------------------------------------------------------------------------
2023-10-06 21:11:24,284 EPOCH 5 done: loss 0.0891 - lr: 0.000089
2023-10-06 21:11:30,964 DEV : loss 0.12431611120700836 - f1-score (micro avg)  0.8558
2023-10-06 21:11:30,970 saving best model
2023-10-06 21:11:35,373 ----------------------------------------------------------------------------------------------------
2023-10-06 21:11:46,300 epoch 6 - iter 27/275 - loss 0.07057993 - time (sec): 10.93 - samples/sec: 214.82 - lr: 0.000087 - momentum: 0.000000
2023-10-06 21:11:56,693 epoch 6 - iter 54/275 - loss 0.06558269 - time (sec): 21.32 - samples/sec: 210.43 - lr: 0.000086 - momentum: 0.000000
2023-10-06 21:12:07,445 epoch 6 - iter 81/275 - loss 0.06122069 - time (sec): 32.07 - samples/sec: 209.82 - lr: 0.000084 - momentum: 0.000000
2023-10-06 21:12:18,621 epoch 6 - iter 108/275 - loss 0.05940627 - time (sec): 43.25 - samples/sec: 208.48 - lr: 0.000082 - momentum: 0.000000
2023-10-06 21:12:29,634 epoch 6 - iter 135/275 - loss 0.05905171 - time (sec): 54.26 - samples/sec: 207.76 - lr: 0.000080 - momentum: 0.000000
2023-10-06 21:12:40,370 epoch 6 - iter 162/275 - loss 0.05632511 - time (sec): 65.00 - samples/sec: 207.26 - lr: 0.000079 - momentum: 0.000000
2023-10-06 21:12:51,563 epoch 6 - iter 189/275 - loss 0.06501524 - time (sec): 76.19 - samples/sec: 209.02 - lr: 0.000077 - momentum: 0.000000
2023-10-06 21:13:02,225 epoch 6 - iter 216/275 - loss 0.06236298 - time (sec): 86.85 - samples/sec: 208.33 - lr: 0.000075 - momentum: 0.000000
2023-10-06 21:13:13,005 epoch 6 - iter 243/275 - loss 0.06493312 - time (sec): 97.63 - samples/sec: 207.90 - lr: 0.000073 - momentum: 0.000000
2023-10-06 21:13:23,126 epoch 6 - iter 270/275 - loss 0.06505844 - time (sec): 107.75 - samples/sec: 207.01 - lr: 0.000072 - momentum: 0.000000
2023-10-06 21:13:25,396 ----------------------------------------------------------------------------------------------------
2023-10-06 21:13:25,396 EPOCH 6 done: loss 0.0648 - lr: 0.000072
2023-10-06 21:13:32,058 DEV : loss 0.12224514782428741 - f1-score (micro avg)  0.8709
2023-10-06 21:13:32,064 saving best model
2023-10-06 21:13:36,415 ----------------------------------------------------------------------------------------------------
2023-10-06 21:13:46,779 epoch 7 - iter 27/275 - loss 0.04187397 - time (sec): 10.36 - samples/sec: 197.64 - lr: 0.000070 - momentum: 0.000000
2023-10-06 21:13:57,052 epoch 7 - iter 54/275 - loss 0.04070792 - time (sec): 20.63 - samples/sec: 198.02 - lr: 0.000068 - momentum: 0.000000
2023-10-06 21:14:08,314 epoch 7 - iter 81/275 - loss 0.04907858 - time (sec): 31.90 - samples/sec: 202.68 - lr: 0.000066 - momentum: 0.000000
2023-10-06 21:14:19,438 epoch 7 - iter 108/275 - loss 0.03973019 - time (sec): 43.02 - samples/sec: 207.16 - lr: 0.000064 - momentum: 0.000000
2023-10-06 21:14:30,716 epoch 7 - iter 135/275 - loss 0.04264876 - time (sec): 54.30 - samples/sec: 207.55 - lr: 0.000063 - momentum: 0.000000
2023-10-06 21:14:41,116 epoch 7 - iter 162/275 - loss 0.04839100 - time (sec): 64.70 - samples/sec: 205.43 - lr: 0.000061 - momentum: 0.000000
2023-10-06 21:14:52,120 epoch 7 - iter 189/275 - loss 0.04500606 - time (sec): 75.70 - samples/sec: 205.72 - lr: 0.000059 - momentum: 0.000000
2023-10-06 21:15:03,203 epoch 7 - iter 216/275 - loss 0.04635685 - time (sec): 86.79 - samples/sec: 206.21 - lr: 0.000058 - momentum: 0.000000
2023-10-06 21:15:14,451 epoch 7 - iter 243/275 - loss 0.04828398 - time (sec): 98.03 - samples/sec: 207.62 - lr: 0.000056 - momentum: 0.000000
2023-10-06 21:15:25,007 epoch 7 - iter 270/275 - loss 0.05190075 - time (sec): 108.59 - samples/sec: 206.93 - lr: 0.000054 - momentum: 0.000000
2023-10-06 21:15:26,743 ----------------------------------------------------------------------------------------------------
2023-10-06 21:15:26,743 EPOCH 7 done: loss 0.0518 - lr: 0.000054
2023-10-06 21:15:33,413 DEV : loss 0.12933534383773804 - f1-score (micro avg)  0.8627
2023-10-06 21:15:33,419 ----------------------------------------------------------------------------------------------------
2023-10-06 21:15:43,432 epoch 8 - iter 27/275 - loss 0.04380187 - time (sec): 10.01 - samples/sec: 193.98 - lr: 0.000052 - momentum: 0.000000
2023-10-06 21:15:53,820 epoch 8 - iter 54/275 - loss 0.06057894 - time (sec): 20.40 - samples/sec: 203.09 - lr: 0.000050 - momentum: 0.000000
2023-10-06 21:16:04,746 epoch 8 - iter 81/275 - loss 0.05231526 - time (sec): 31.33 - samples/sec: 206.54 - lr: 0.000048 - momentum: 0.000000
2023-10-06 21:16:15,647 epoch 8 - iter 108/275 - loss 0.04889467 - time (sec): 42.23 - samples/sec: 207.48 - lr: 0.000047 - momentum: 0.000000
2023-10-06 21:16:25,985 epoch 8 - iter 135/275 - loss 0.04684457 - time (sec): 52.56 - samples/sec: 204.32 - lr: 0.000045 - momentum: 0.000000
2023-10-06 21:16:37,470 epoch 8 - iter 162/275 - loss 0.04855515 - time (sec): 64.05 - samples/sec: 206.68 - lr: 0.000043 - momentum: 0.000000
2023-10-06 21:16:47,560 epoch 8 - iter 189/275 - loss 0.04673321 - time (sec): 74.14 - samples/sec: 206.10 - lr: 0.000042 - momentum: 0.000000
2023-10-06 21:16:58,987 epoch 8 - iter 216/275 - loss 0.04384603 - time (sec): 85.57 - samples/sec: 206.97 - lr: 0.000040 - momentum: 0.000000
2023-10-06 21:17:10,417 epoch 8 - iter 243/275 - loss 0.04459432 - time (sec): 97.00 - samples/sec: 207.64 - lr: 0.000038 - momentum: 0.000000
2023-10-06 21:17:21,170 epoch 8 - iter 270/275 - loss 0.04257561 - time (sec): 107.75 - samples/sec: 207.30 - lr: 0.000036 - momentum: 0.000000
2023-10-06 21:17:23,241 ----------------------------------------------------------------------------------------------------
2023-10-06 21:17:23,241 EPOCH 8 done: loss 0.0418 - lr: 0.000036
2023-10-06 21:17:29,906 DEV : loss 0.13218103349208832 - f1-score (micro avg)  0.8892
2023-10-06 21:17:29,912 saving best model
2023-10-06 21:17:34,235 ----------------------------------------------------------------------------------------------------
2023-10-06 21:17:44,834 epoch 9 - iter 27/275 - loss 0.02652253 - time (sec): 10.60 - samples/sec: 202.68 - lr: 0.000034 - momentum: 0.000000
2023-10-06 21:17:55,396 epoch 9 - iter 54/275 - loss 0.04854387 - time (sec): 21.16 - samples/sec: 204.49 - lr: 0.000032 - momentum: 0.000000
2023-10-06 21:18:06,066 epoch 9 - iter 81/275 - loss 0.05078626 - time (sec): 31.83 - samples/sec: 204.74 - lr: 0.000031 - momentum: 0.000000
2023-10-06 21:18:17,352 epoch 9 - iter 108/275 - loss 0.04987359 - time (sec): 43.12 - samples/sec: 205.19 - lr: 0.000029 - momentum: 0.000000
2023-10-06 21:18:28,170 epoch 9 - iter 135/275 - loss 0.05203896 - time (sec): 53.93 - samples/sec: 205.62 - lr: 0.000027 - momentum: 0.000000
2023-10-06 21:18:38,499 epoch 9 - iter 162/275 - loss 0.05289938 - time (sec): 64.26 - samples/sec: 206.11 - lr: 0.000026 - momentum: 0.000000
2023-10-06 21:18:50,354 epoch 9 - iter 189/275 - loss 0.04529210 - time (sec): 76.12 - samples/sec: 207.59 - lr: 0.000024 - momentum: 0.000000
2023-10-06 21:19:01,010 epoch 9 - iter 216/275 - loss 0.04172254 - time (sec): 86.77 - samples/sec: 207.63 - lr: 0.000022 - momentum: 0.000000
2023-10-06 21:19:11,223 epoch 9 - iter 243/275 - loss 0.03840025 - time (sec): 96.99 - samples/sec: 206.42 - lr: 0.000020 - momentum: 0.000000
2023-10-06 21:19:22,087 epoch 9 - iter 270/275 - loss 0.03840849 - time (sec): 107.85 - samples/sec: 207.09 - lr: 0.000019 - momentum: 0.000000
2023-10-06 21:19:24,089 ----------------------------------------------------------------------------------------------------
2023-10-06 21:19:24,089 EPOCH 9 done: loss 0.0379 - lr: 0.000019
2023-10-06 21:19:30,702 DEV : loss 0.1376478224992752 - f1-score (micro avg)  0.8664
2023-10-06 21:19:30,708 ----------------------------------------------------------------------------------------------------
2023-10-06 21:19:41,630 epoch 10 - iter 27/275 - loss 0.05058081 - time (sec): 10.92 - samples/sec: 208.06 - lr: 0.000017 - momentum: 0.000000
2023-10-06 21:19:52,250 epoch 10 - iter 54/275 - loss 0.04581674 - time (sec): 21.54 - samples/sec: 205.80 - lr: 0.000015 - momentum: 0.000000
2023-10-06 21:20:02,820 epoch 10 - iter 81/275 - loss 0.03678298 - time (sec): 32.11 - samples/sec: 206.76 - lr: 0.000013 - momentum: 0.000000
2023-10-06 21:20:13,857 epoch 10 - iter 108/275 - loss 0.03737114 - time (sec): 43.15 - samples/sec: 207.80 - lr: 0.000011 - momentum: 0.000000
2023-10-06 21:20:24,327 epoch 10 - iter 135/275 - loss 0.03215051 - time (sec): 53.62 - samples/sec: 205.81 - lr: 0.000010 - momentum: 0.000000
2023-10-06 21:20:34,938 epoch 10 - iter 162/275 - loss 0.03481797 - time (sec): 64.23 - samples/sec: 205.31 - lr: 0.000008 - momentum: 0.000000
2023-10-06 21:20:45,933 epoch 10 - iter 189/275 - loss 0.03404409 - time (sec): 75.22 - samples/sec: 205.40 - lr: 0.000006 - momentum: 0.000000
2023-10-06 21:20:56,901 epoch 10 - iter 216/275 - loss 0.03300710 - time (sec): 86.19 - samples/sec: 206.14 - lr: 0.000004 - momentum: 0.000000
2023-10-06 21:21:07,747 epoch 10 - iter 243/275 - loss 0.03216155 - time (sec): 97.04 - samples/sec: 206.83 - lr: 0.000003 - momentum: 0.000000
2023-10-06 21:21:18,408 epoch 10 - iter 270/275 - loss 0.03352601 - time (sec): 107.70 - samples/sec: 207.18 - lr: 0.000001 - momentum: 0.000000
2023-10-06 21:21:20,592 ----------------------------------------------------------------------------------------------------
2023-10-06 21:21:20,592 EPOCH 10 done: loss 0.0334 - lr: 0.000001
2023-10-06 21:21:27,269 DEV : loss 0.1404709368944168 - f1-score (micro avg)  0.8685
2023-10-06 21:21:28,181 ----------------------------------------------------------------------------------------------------
2023-10-06 21:21:28,182 Loading model from best epoch ...
2023-10-06 21:21:31,522 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-06 21:21:38,605 
Results:
- F-score (micro) 0.8845
- F-score (macro) 0.5336
- Accuracy 0.8101

By class:
              precision    recall  f1-score   support

       scope     0.8857    0.8807    0.8832       176
        pers     0.9370    0.9297    0.9333       128
        work     0.8514    0.8514    0.8514        74
      object     0.0000    0.0000    0.0000         2
         loc     0.0000    0.0000    0.0000         2

   micro avg     0.8868    0.8822    0.8845       382
   macro avg     0.5348    0.5323    0.5336       382
weighted avg     0.8870    0.8822    0.8846       382

2023-10-06 21:21:38,605 ----------------------------------------------------------------------------------------------------