File size: 4,816 Bytes
3eccbce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
language: de
license: mit
tags:
- flair
- token-classification
- sequence-tagger-model
base_model: dbmdz/bert-tiny-historic-multilingual-cased
widget:
- text:  Dramatiſch war der Stoff vor Sophokles von Äſchylos behandelt worden in
    den Θροῇσσαι , denen vielleicht in der Trilogie das Stüc>"OnJw» κοίσις vorherging
    , das Stück Σαλαμίνιαι folgte .
---

# Fine-tuned Flair Model on AjMC German NER Dataset (HIPE-2022)

This Flair model was fine-tuned on the
[AjMC German](https://github.com/hipe-eval/HIPE-2022-data/blob/main/documentation/README-ajmc.md)
NER Dataset using hmBERT Tiny as backbone LM.

The AjMC dataset consists of NE-annotated historical commentaries in the field of Classics,
and was created in the context of the [Ajax MultiCommentary](https://mromanello.github.io/ajax-multi-commentary/)
project.

The following NEs were annotated: `pers`, `work`, `loc`, `object`, `date` and `scope`.

# Results

We performed a hyper-parameter search over the following parameters with 5 different seeds per configuration:

* Batch Sizes: `[4, 8]`
* Learning Rates: `[5e-05, 3e-05]`

And report micro F1-score on development set:

| Configuration     | Seed 1           | Seed 2       | Seed 3       | Seed 4       | Seed 5       | Average         |
|-------------------|------------------|--------------|--------------|--------------|--------------|-----------------|
| `bs4-e10-lr5e-05` | [0.6471][1]      | [0.6226][2]  | [0.6406][3]  | [0.6087][4]  | [0.6286][5]  | 0.6295 ± 0.0151 |
| `bs8-e10-lr5e-05` | [0.5943][6]      | [0.5707][7]  | [0.6122][8]  | [0.5884][9]  | [0.5848][10] | 0.5901 ± 0.0151 |
| `bs4-e10-lr3e-05` | [**0.5483**][11] | [0.52][12]   | [0.6039][13] | [0.5435][14] | [0.5689][15] | 0.5569 ± 0.0315 |
| `bs8-e10-lr3e-05` | [0.4147][16]     | [0.3173][17] | [0.4288][18] | [0.3185][19] | [0.4139][20] | 0.3786 ± 0.0558 |

[1]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
[2]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
[3]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
[4]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
[5]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
[6]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1
[7]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2
[8]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3
[9]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4
[10]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-5
[11]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
[12]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
[13]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
[14]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
[15]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5
[16]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1
[17]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2
[18]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3
[19]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4
[20]: https://hf.co/stefan-it/hmbench-ajmc-de-hmbert_tiny-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5

The [training log](training.log) and TensorBoard logs (not available for hmBERT Base model) are also uploaded to the model hub.

More information about fine-tuning can be found [here](https://github.com/stefan-it/hmBench).

# Acknowledgements

We thank [Luisa März](https://github.com/LuisaMaerz), [Katharina Schmid](https://github.com/schmika) and
[Erion Çano](https://github.com/erionc) for their fruitful discussions about Historic Language Models.

Research supported with Cloud TPUs from Google's [TPU Research Cloud](https://sites.research.google/trc/about/) (TRC).
Many Thanks for providing access to the TPUs ❤️