File size: 23,968 Bytes
c27f0be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
2023-10-13 08:14:01,768 ----------------------------------------------------------------------------------------------------
2023-10-13 08:14:01,769 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 08:14:01,769 ----------------------------------------------------------------------------------------------------
2023-10-13 08:14:01,769 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-13 08:14:01,769 ----------------------------------------------------------------------------------------------------
2023-10-13 08:14:01,769 Train:  1100 sentences
2023-10-13 08:14:01,769         (train_with_dev=False, train_with_test=False)
2023-10-13 08:14:01,769 ----------------------------------------------------------------------------------------------------
2023-10-13 08:14:01,769 Training Params:
2023-10-13 08:14:01,769  - learning_rate: "5e-05" 
2023-10-13 08:14:01,769  - mini_batch_size: "4"
2023-10-13 08:14:01,769  - max_epochs: "10"
2023-10-13 08:14:01,769  - shuffle: "True"
2023-10-13 08:14:01,769 ----------------------------------------------------------------------------------------------------
2023-10-13 08:14:01,769 Plugins:
2023-10-13 08:14:01,769  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 08:14:01,769 ----------------------------------------------------------------------------------------------------
2023-10-13 08:14:01,770 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 08:14:01,770  - metric: "('micro avg', 'f1-score')"
2023-10-13 08:14:01,770 ----------------------------------------------------------------------------------------------------
2023-10-13 08:14:01,770 Computation:
2023-10-13 08:14:01,770  - compute on device: cuda:0
2023-10-13 08:14:01,770  - embedding storage: none
2023-10-13 08:14:01,770 ----------------------------------------------------------------------------------------------------
2023-10-13 08:14:01,770 Model training base path: "hmbench-ajmc/de-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-13 08:14:01,770 ----------------------------------------------------------------------------------------------------
2023-10-13 08:14:01,770 ----------------------------------------------------------------------------------------------------
2023-10-13 08:14:03,001 epoch 1 - iter 27/275 - loss 3.33558083 - time (sec): 1.23 - samples/sec: 1631.73 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:14:04,224 epoch 1 - iter 54/275 - loss 2.67411401 - time (sec): 2.45 - samples/sec: 1753.52 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:14:05,459 epoch 1 - iter 81/275 - loss 2.11284940 - time (sec): 3.69 - samples/sec: 1788.25 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:14:06,669 epoch 1 - iter 108/275 - loss 1.76614819 - time (sec): 4.90 - samples/sec: 1774.02 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:14:07,829 epoch 1 - iter 135/275 - loss 1.51034631 - time (sec): 6.06 - samples/sec: 1813.01 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:14:08,967 epoch 1 - iter 162/275 - loss 1.32202341 - time (sec): 7.20 - samples/sec: 1835.54 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:14:10,099 epoch 1 - iter 189/275 - loss 1.18186350 - time (sec): 8.33 - samples/sec: 1866.28 - lr: 0.000034 - momentum: 0.000000
2023-10-13 08:14:11,297 epoch 1 - iter 216/275 - loss 1.07761205 - time (sec): 9.53 - samples/sec: 1852.79 - lr: 0.000039 - momentum: 0.000000
2023-10-13 08:14:12,562 epoch 1 - iter 243/275 - loss 0.99262472 - time (sec): 10.79 - samples/sec: 1850.08 - lr: 0.000044 - momentum: 0.000000
2023-10-13 08:14:13,753 epoch 1 - iter 270/275 - loss 0.91954943 - time (sec): 11.98 - samples/sec: 1866.59 - lr: 0.000049 - momentum: 0.000000
2023-10-13 08:14:13,967 ----------------------------------------------------------------------------------------------------
2023-10-13 08:14:13,967 EPOCH 1 done: loss 0.9096 - lr: 0.000049
2023-10-13 08:14:14,722 DEV : loss 0.250717431306839 - f1-score (micro avg)  0.6667
2023-10-13 08:14:14,727 saving best model
2023-10-13 08:14:15,052 ----------------------------------------------------------------------------------------------------
2023-10-13 08:14:16,208 epoch 2 - iter 27/275 - loss 0.23410146 - time (sec): 1.15 - samples/sec: 1777.65 - lr: 0.000049 - momentum: 0.000000
2023-10-13 08:14:17,411 epoch 2 - iter 54/275 - loss 0.24637708 - time (sec): 2.36 - samples/sec: 1806.62 - lr: 0.000049 - momentum: 0.000000
2023-10-13 08:14:18,643 epoch 2 - iter 81/275 - loss 0.22152461 - time (sec): 3.59 - samples/sec: 1741.02 - lr: 0.000048 - momentum: 0.000000
2023-10-13 08:14:19,832 epoch 2 - iter 108/275 - loss 0.21036926 - time (sec): 4.78 - samples/sec: 1792.53 - lr: 0.000048 - momentum: 0.000000
2023-10-13 08:14:21,000 epoch 2 - iter 135/275 - loss 0.19577919 - time (sec): 5.95 - samples/sec: 1848.62 - lr: 0.000047 - momentum: 0.000000
2023-10-13 08:14:22,189 epoch 2 - iter 162/275 - loss 0.18918108 - time (sec): 7.14 - samples/sec: 1835.57 - lr: 0.000047 - momentum: 0.000000
2023-10-13 08:14:23,371 epoch 2 - iter 189/275 - loss 0.17818824 - time (sec): 8.32 - samples/sec: 1852.51 - lr: 0.000046 - momentum: 0.000000
2023-10-13 08:14:24,558 epoch 2 - iter 216/275 - loss 0.17039517 - time (sec): 9.50 - samples/sec: 1863.17 - lr: 0.000046 - momentum: 0.000000
2023-10-13 08:14:25,744 epoch 2 - iter 243/275 - loss 0.16347807 - time (sec): 10.69 - samples/sec: 1865.43 - lr: 0.000045 - momentum: 0.000000
2023-10-13 08:14:26,931 epoch 2 - iter 270/275 - loss 0.17165927 - time (sec): 11.88 - samples/sec: 1882.03 - lr: 0.000045 - momentum: 0.000000
2023-10-13 08:14:27,148 ----------------------------------------------------------------------------------------------------
2023-10-13 08:14:27,149 EPOCH 2 done: loss 0.1701 - lr: 0.000045
2023-10-13 08:14:27,838 DEV : loss 0.14587247371673584 - f1-score (micro avg)  0.8206
2023-10-13 08:14:27,842 saving best model
2023-10-13 08:14:28,275 ----------------------------------------------------------------------------------------------------
2023-10-13 08:14:29,496 epoch 3 - iter 27/275 - loss 0.13383562 - time (sec): 1.22 - samples/sec: 1736.08 - lr: 0.000044 - momentum: 0.000000
2023-10-13 08:14:30,722 epoch 3 - iter 54/275 - loss 0.10313550 - time (sec): 2.44 - samples/sec: 1826.42 - lr: 0.000043 - momentum: 0.000000
2023-10-13 08:14:31,906 epoch 3 - iter 81/275 - loss 0.11209919 - time (sec): 3.63 - samples/sec: 1857.33 - lr: 0.000043 - momentum: 0.000000
2023-10-13 08:14:33,096 epoch 3 - iter 108/275 - loss 0.11891061 - time (sec): 4.82 - samples/sec: 1896.16 - lr: 0.000042 - momentum: 0.000000
2023-10-13 08:14:34,241 epoch 3 - iter 135/275 - loss 0.11566765 - time (sec): 5.96 - samples/sec: 1893.17 - lr: 0.000042 - momentum: 0.000000
2023-10-13 08:14:35,385 epoch 3 - iter 162/275 - loss 0.10788338 - time (sec): 7.11 - samples/sec: 1890.39 - lr: 0.000041 - momentum: 0.000000
2023-10-13 08:14:36,539 epoch 3 - iter 189/275 - loss 0.10759457 - time (sec): 8.26 - samples/sec: 1912.29 - lr: 0.000041 - momentum: 0.000000
2023-10-13 08:14:37,694 epoch 3 - iter 216/275 - loss 0.11295502 - time (sec): 9.42 - samples/sec: 1923.17 - lr: 0.000040 - momentum: 0.000000
2023-10-13 08:14:38,838 epoch 3 - iter 243/275 - loss 0.10740960 - time (sec): 10.56 - samples/sec: 1901.57 - lr: 0.000040 - momentum: 0.000000
2023-10-13 08:14:39,981 epoch 3 - iter 270/275 - loss 0.11235786 - time (sec): 11.70 - samples/sec: 1908.93 - lr: 0.000039 - momentum: 0.000000
2023-10-13 08:14:40,189 ----------------------------------------------------------------------------------------------------
2023-10-13 08:14:40,189 EPOCH 3 done: loss 0.1140 - lr: 0.000039
2023-10-13 08:14:40,903 DEV : loss 0.18647150695323944 - f1-score (micro avg)  0.8102
2023-10-13 08:14:40,908 ----------------------------------------------------------------------------------------------------
2023-10-13 08:14:42,097 epoch 4 - iter 27/275 - loss 0.08370121 - time (sec): 1.19 - samples/sec: 1973.50 - lr: 0.000038 - momentum: 0.000000
2023-10-13 08:14:43,326 epoch 4 - iter 54/275 - loss 0.06789951 - time (sec): 2.42 - samples/sec: 1979.25 - lr: 0.000038 - momentum: 0.000000
2023-10-13 08:14:44,586 epoch 4 - iter 81/275 - loss 0.08149310 - time (sec): 3.68 - samples/sec: 1910.29 - lr: 0.000037 - momentum: 0.000000
2023-10-13 08:14:45,811 epoch 4 - iter 108/275 - loss 0.08272403 - time (sec): 4.90 - samples/sec: 1831.94 - lr: 0.000037 - momentum: 0.000000
2023-10-13 08:14:46,982 epoch 4 - iter 135/275 - loss 0.07998629 - time (sec): 6.07 - samples/sec: 1854.92 - lr: 0.000036 - momentum: 0.000000
2023-10-13 08:14:48,158 epoch 4 - iter 162/275 - loss 0.08178955 - time (sec): 7.25 - samples/sec: 1849.81 - lr: 0.000036 - momentum: 0.000000
2023-10-13 08:14:49,350 epoch 4 - iter 189/275 - loss 0.08232270 - time (sec): 8.44 - samples/sec: 1860.12 - lr: 0.000035 - momentum: 0.000000
2023-10-13 08:14:50,618 epoch 4 - iter 216/275 - loss 0.07685133 - time (sec): 9.71 - samples/sec: 1826.69 - lr: 0.000035 - momentum: 0.000000
2023-10-13 08:14:51,855 epoch 4 - iter 243/275 - loss 0.07707240 - time (sec): 10.95 - samples/sec: 1824.96 - lr: 0.000034 - momentum: 0.000000
2023-10-13 08:14:53,065 epoch 4 - iter 270/275 - loss 0.08226021 - time (sec): 12.16 - samples/sec: 1840.06 - lr: 0.000034 - momentum: 0.000000
2023-10-13 08:14:53,281 ----------------------------------------------------------------------------------------------------
2023-10-13 08:14:53,281 EPOCH 4 done: loss 0.0833 - lr: 0.000034
2023-10-13 08:14:53,986 DEV : loss 0.1847609579563141 - f1-score (micro avg)  0.8262
2023-10-13 08:14:53,991 saving best model
2023-10-13 08:14:54,412 ----------------------------------------------------------------------------------------------------
2023-10-13 08:14:55,578 epoch 5 - iter 27/275 - loss 0.06092588 - time (sec): 1.16 - samples/sec: 1678.67 - lr: 0.000033 - momentum: 0.000000
2023-10-13 08:14:56,790 epoch 5 - iter 54/275 - loss 0.05263885 - time (sec): 2.37 - samples/sec: 1713.41 - lr: 0.000032 - momentum: 0.000000
2023-10-13 08:14:58,008 epoch 5 - iter 81/275 - loss 0.05221081 - time (sec): 3.59 - samples/sec: 1844.45 - lr: 0.000032 - momentum: 0.000000
2023-10-13 08:14:59,237 epoch 5 - iter 108/275 - loss 0.05548114 - time (sec): 4.82 - samples/sec: 1881.73 - lr: 0.000031 - momentum: 0.000000
2023-10-13 08:15:00,457 epoch 5 - iter 135/275 - loss 0.05277666 - time (sec): 6.04 - samples/sec: 1894.06 - lr: 0.000031 - momentum: 0.000000
2023-10-13 08:15:01,665 epoch 5 - iter 162/275 - loss 0.05535209 - time (sec): 7.25 - samples/sec: 1895.46 - lr: 0.000030 - momentum: 0.000000
2023-10-13 08:15:02,871 epoch 5 - iter 189/275 - loss 0.06133723 - time (sec): 8.45 - samples/sec: 1871.34 - lr: 0.000030 - momentum: 0.000000
2023-10-13 08:15:04,171 epoch 5 - iter 216/275 - loss 0.06711398 - time (sec): 9.75 - samples/sec: 1850.81 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:15:05,383 epoch 5 - iter 243/275 - loss 0.06827843 - time (sec): 10.96 - samples/sec: 1838.85 - lr: 0.000029 - momentum: 0.000000
2023-10-13 08:15:06,652 epoch 5 - iter 270/275 - loss 0.06420277 - time (sec): 12.23 - samples/sec: 1832.01 - lr: 0.000028 - momentum: 0.000000
2023-10-13 08:15:06,895 ----------------------------------------------------------------------------------------------------
2023-10-13 08:15:06,895 EPOCH 5 done: loss 0.0642 - lr: 0.000028
2023-10-13 08:15:07,577 DEV : loss 0.14506205916404724 - f1-score (micro avg)  0.8708
2023-10-13 08:15:07,582 saving best model
2023-10-13 08:15:08,019 ----------------------------------------------------------------------------------------------------
2023-10-13 08:15:09,224 epoch 6 - iter 27/275 - loss 0.05970436 - time (sec): 1.20 - samples/sec: 1721.93 - lr: 0.000027 - momentum: 0.000000
2023-10-13 08:15:10,459 epoch 6 - iter 54/275 - loss 0.04735020 - time (sec): 2.44 - samples/sec: 1796.11 - lr: 0.000027 - momentum: 0.000000
2023-10-13 08:15:11,622 epoch 6 - iter 81/275 - loss 0.04104958 - time (sec): 3.60 - samples/sec: 1812.76 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:15:12,835 epoch 6 - iter 108/275 - loss 0.04949143 - time (sec): 4.81 - samples/sec: 1836.10 - lr: 0.000026 - momentum: 0.000000
2023-10-13 08:15:14,017 epoch 6 - iter 135/275 - loss 0.04836931 - time (sec): 6.00 - samples/sec: 1839.95 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:15:15,221 epoch 6 - iter 162/275 - loss 0.04469466 - time (sec): 7.20 - samples/sec: 1843.17 - lr: 0.000025 - momentum: 0.000000
2023-10-13 08:15:16,430 epoch 6 - iter 189/275 - loss 0.03948178 - time (sec): 8.41 - samples/sec: 1856.16 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:15:17,594 epoch 6 - iter 216/275 - loss 0.03659484 - time (sec): 9.57 - samples/sec: 1851.46 - lr: 0.000024 - momentum: 0.000000
2023-10-13 08:15:18,778 epoch 6 - iter 243/275 - loss 0.03967343 - time (sec): 10.76 - samples/sec: 1857.83 - lr: 0.000023 - momentum: 0.000000
2023-10-13 08:15:19,960 epoch 6 - iter 270/275 - loss 0.04312660 - time (sec): 11.94 - samples/sec: 1876.85 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:15:20,179 ----------------------------------------------------------------------------------------------------
2023-10-13 08:15:20,179 EPOCH 6 done: loss 0.0427 - lr: 0.000022
2023-10-13 08:15:20,904 DEV : loss 0.1451627016067505 - f1-score (micro avg)  0.864
2023-10-13 08:15:20,909 ----------------------------------------------------------------------------------------------------
2023-10-13 08:15:22,173 epoch 7 - iter 27/275 - loss 0.01073423 - time (sec): 1.26 - samples/sec: 1910.92 - lr: 0.000022 - momentum: 0.000000
2023-10-13 08:15:23,430 epoch 7 - iter 54/275 - loss 0.02813451 - time (sec): 2.52 - samples/sec: 1752.36 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:15:24,731 epoch 7 - iter 81/275 - loss 0.02165146 - time (sec): 3.82 - samples/sec: 1660.75 - lr: 0.000021 - momentum: 0.000000
2023-10-13 08:15:25,997 epoch 7 - iter 108/275 - loss 0.03467252 - time (sec): 5.09 - samples/sec: 1699.00 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:15:27,259 epoch 7 - iter 135/275 - loss 0.03436861 - time (sec): 6.35 - samples/sec: 1684.38 - lr: 0.000020 - momentum: 0.000000
2023-10-13 08:15:28,481 epoch 7 - iter 162/275 - loss 0.02992802 - time (sec): 7.57 - samples/sec: 1720.58 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:15:29,724 epoch 7 - iter 189/275 - loss 0.02742828 - time (sec): 8.81 - samples/sec: 1743.29 - lr: 0.000019 - momentum: 0.000000
2023-10-13 08:15:30,987 epoch 7 - iter 216/275 - loss 0.02801723 - time (sec): 10.08 - samples/sec: 1760.11 - lr: 0.000018 - momentum: 0.000000
2023-10-13 08:15:32,227 epoch 7 - iter 243/275 - loss 0.02947050 - time (sec): 11.32 - samples/sec: 1745.03 - lr: 0.000017 - momentum: 0.000000
2023-10-13 08:15:33,422 epoch 7 - iter 270/275 - loss 0.03199856 - time (sec): 12.51 - samples/sec: 1781.65 - lr: 0.000017 - momentum: 0.000000
2023-10-13 08:15:33,636 ----------------------------------------------------------------------------------------------------
2023-10-13 08:15:33,636 EPOCH 7 done: loss 0.0323 - lr: 0.000017
2023-10-13 08:15:34,393 DEV : loss 0.1610579639673233 - f1-score (micro avg)  0.8779
2023-10-13 08:15:34,402 saving best model
2023-10-13 08:15:34,979 ----------------------------------------------------------------------------------------------------
2023-10-13 08:15:36,276 epoch 8 - iter 27/275 - loss 0.04070795 - time (sec): 1.29 - samples/sec: 1804.38 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:15:37,571 epoch 8 - iter 54/275 - loss 0.02618551 - time (sec): 2.59 - samples/sec: 1778.13 - lr: 0.000016 - momentum: 0.000000
2023-10-13 08:15:38,888 epoch 8 - iter 81/275 - loss 0.03158104 - time (sec): 3.91 - samples/sec: 1732.47 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:15:40,194 epoch 8 - iter 108/275 - loss 0.02666479 - time (sec): 5.21 - samples/sec: 1719.61 - lr: 0.000015 - momentum: 0.000000
2023-10-13 08:15:41,490 epoch 8 - iter 135/275 - loss 0.02914085 - time (sec): 6.51 - samples/sec: 1723.02 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:15:42,789 epoch 8 - iter 162/275 - loss 0.02758595 - time (sec): 7.81 - samples/sec: 1711.53 - lr: 0.000014 - momentum: 0.000000
2023-10-13 08:15:43,971 epoch 8 - iter 189/275 - loss 0.02407604 - time (sec): 8.99 - samples/sec: 1723.62 - lr: 0.000013 - momentum: 0.000000
2023-10-13 08:15:45,142 epoch 8 - iter 216/275 - loss 0.02445442 - time (sec): 10.16 - samples/sec: 1741.92 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:15:46,351 epoch 8 - iter 243/275 - loss 0.02435487 - time (sec): 11.37 - samples/sec: 1758.93 - lr: 0.000012 - momentum: 0.000000
2023-10-13 08:15:47,580 epoch 8 - iter 270/275 - loss 0.02374684 - time (sec): 12.60 - samples/sec: 1778.25 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:15:47,799 ----------------------------------------------------------------------------------------------------
2023-10-13 08:15:47,799 EPOCH 8 done: loss 0.0236 - lr: 0.000011
2023-10-13 08:15:48,486 DEV : loss 0.16053281724452972 - f1-score (micro avg)  0.8937
2023-10-13 08:15:48,491 saving best model
2023-10-13 08:15:48,912 ----------------------------------------------------------------------------------------------------
2023-10-13 08:15:50,125 epoch 9 - iter 27/275 - loss 0.00901293 - time (sec): 1.20 - samples/sec: 1948.80 - lr: 0.000011 - momentum: 0.000000
2023-10-13 08:15:51,323 epoch 9 - iter 54/275 - loss 0.01143770 - time (sec): 2.40 - samples/sec: 1853.04 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:15:52,569 epoch 9 - iter 81/275 - loss 0.01790511 - time (sec): 3.65 - samples/sec: 1940.55 - lr: 0.000010 - momentum: 0.000000
2023-10-13 08:15:53,800 epoch 9 - iter 108/275 - loss 0.02044590 - time (sec): 4.88 - samples/sec: 1909.52 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:15:55,016 epoch 9 - iter 135/275 - loss 0.01775785 - time (sec): 6.09 - samples/sec: 1883.37 - lr: 0.000009 - momentum: 0.000000
2023-10-13 08:15:56,242 epoch 9 - iter 162/275 - loss 0.01993149 - time (sec): 7.32 - samples/sec: 1902.30 - lr: 0.000008 - momentum: 0.000000
2023-10-13 08:15:57,636 epoch 9 - iter 189/275 - loss 0.01763028 - time (sec): 8.71 - samples/sec: 1829.81 - lr: 0.000007 - momentum: 0.000000
2023-10-13 08:15:58,994 epoch 9 - iter 216/275 - loss 0.01660131 - time (sec): 10.07 - samples/sec: 1803.02 - lr: 0.000007 - momentum: 0.000000
2023-10-13 08:16:00,201 epoch 9 - iter 243/275 - loss 0.01609966 - time (sec): 11.28 - samples/sec: 1790.54 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:16:01,366 epoch 9 - iter 270/275 - loss 0.01741414 - time (sec): 12.44 - samples/sec: 1804.27 - lr: 0.000006 - momentum: 0.000000
2023-10-13 08:16:01,577 ----------------------------------------------------------------------------------------------------
2023-10-13 08:16:01,577 EPOCH 9 done: loss 0.0172 - lr: 0.000006
2023-10-13 08:16:02,318 DEV : loss 0.1515495926141739 - f1-score (micro avg)  0.8884
2023-10-13 08:16:02,324 ----------------------------------------------------------------------------------------------------
2023-10-13 08:16:03,697 epoch 10 - iter 27/275 - loss 0.00451258 - time (sec): 1.37 - samples/sec: 1688.11 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:16:05,107 epoch 10 - iter 54/275 - loss 0.00999560 - time (sec): 2.78 - samples/sec: 1733.84 - lr: 0.000005 - momentum: 0.000000
2023-10-13 08:16:06,383 epoch 10 - iter 81/275 - loss 0.00734492 - time (sec): 4.06 - samples/sec: 1746.50 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:16:07,725 epoch 10 - iter 108/275 - loss 0.00751331 - time (sec): 5.40 - samples/sec: 1714.94 - lr: 0.000004 - momentum: 0.000000
2023-10-13 08:16:08,972 epoch 10 - iter 135/275 - loss 0.00855730 - time (sec): 6.65 - samples/sec: 1748.53 - lr: 0.000003 - momentum: 0.000000
2023-10-13 08:16:10,185 epoch 10 - iter 162/275 - loss 0.00828564 - time (sec): 7.86 - samples/sec: 1738.79 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:16:11,430 epoch 10 - iter 189/275 - loss 0.00791182 - time (sec): 9.10 - samples/sec: 1738.66 - lr: 0.000002 - momentum: 0.000000
2023-10-13 08:16:12,698 epoch 10 - iter 216/275 - loss 0.01131091 - time (sec): 10.37 - samples/sec: 1734.08 - lr: 0.000001 - momentum: 0.000000
2023-10-13 08:16:13,950 epoch 10 - iter 243/275 - loss 0.01216239 - time (sec): 11.62 - samples/sec: 1742.57 - lr: 0.000001 - momentum: 0.000000
2023-10-13 08:16:15,183 epoch 10 - iter 270/275 - loss 0.01183371 - time (sec): 12.86 - samples/sec: 1741.89 - lr: 0.000000 - momentum: 0.000000
2023-10-13 08:16:15,408 ----------------------------------------------------------------------------------------------------
2023-10-13 08:16:15,409 EPOCH 10 done: loss 0.0116 - lr: 0.000000
2023-10-13 08:16:16,126 DEV : loss 0.15584614872932434 - f1-score (micro avg)  0.8884
2023-10-13 08:16:16,453 ----------------------------------------------------------------------------------------------------
2023-10-13 08:16:16,455 Loading model from best epoch ...
2023-10-13 08:16:18,073 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-13 08:16:18,744 
Results:
- F-score (micro) 0.9143
- F-score (macro) 0.879
- Accuracy 0.8585

By class:
              precision    recall  f1-score   support

       scope     0.8811    0.9261    0.9030       176
        pers     0.9683    0.9531    0.9606       128
        work     0.8649    0.8649    0.8649        74
      object     1.0000    1.0000    1.0000         2
         loc     1.0000    0.5000    0.6667         2

   micro avg     0.9072    0.9215    0.9143       382
   macro avg     0.9428    0.8488    0.8790       382
weighted avg     0.9084    0.9215    0.9142       382

2023-10-13 08:16:18,744 ----------------------------------------------------------------------------------------------------