File size: 26,663 Bytes
95c5527 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
2024-03-26 10:59:50,722 ----------------------------------------------------------------------------------------------------
2024-03-26 10:59:50,722 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(30001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 10:59:50,722 ----------------------------------------------------------------------------------------------------
2024-03-26 10:59:50,722 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 10:59:50,722 ----------------------------------------------------------------------------------------------------
2024-03-26 10:59:50,722 Train: 758 sentences
2024-03-26 10:59:50,722 (train_with_dev=False, train_with_test=False)
2024-03-26 10:59:50,722 ----------------------------------------------------------------------------------------------------
2024-03-26 10:59:50,722 Training Params:
2024-03-26 10:59:50,722 - learning_rate: "5e-05"
2024-03-26 10:59:50,722 - mini_batch_size: "16"
2024-03-26 10:59:50,722 - max_epochs: "10"
2024-03-26 10:59:50,722 - shuffle: "True"
2024-03-26 10:59:50,722 ----------------------------------------------------------------------------------------------------
2024-03-26 10:59:50,722 Plugins:
2024-03-26 10:59:50,722 - TensorboardLogger
2024-03-26 10:59:50,722 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 10:59:50,723 ----------------------------------------------------------------------------------------------------
2024-03-26 10:59:50,723 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 10:59:50,723 - metric: "('micro avg', 'f1-score')"
2024-03-26 10:59:50,723 ----------------------------------------------------------------------------------------------------
2024-03-26 10:59:50,723 Computation:
2024-03-26 10:59:50,723 - compute on device: cuda:0
2024-03-26 10:59:50,723 - embedding storage: none
2024-03-26 10:59:50,723 ----------------------------------------------------------------------------------------------------
2024-03-26 10:59:50,723 Model training base path: "flair-co-funer-german_bert_base-bs16-e10-lr5e-05-1"
2024-03-26 10:59:50,723 ----------------------------------------------------------------------------------------------------
2024-03-26 10:59:50,723 ----------------------------------------------------------------------------------------------------
2024-03-26 10:59:50,723 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 10:59:52,827 epoch 1 - iter 4/48 - loss 3.17719565 - time (sec): 2.10 - samples/sec: 1290.23 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:59:54,174 epoch 1 - iter 8/48 - loss 3.22940502 - time (sec): 3.45 - samples/sec: 1561.49 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:59:57,198 epoch 1 - iter 12/48 - loss 3.11554189 - time (sec): 6.48 - samples/sec: 1343.86 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:00:00,546 epoch 1 - iter 16/48 - loss 2.96962598 - time (sec): 9.82 - samples/sec: 1241.33 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:00:03,131 epoch 1 - iter 20/48 - loss 2.80109533 - time (sec): 12.41 - samples/sec: 1239.73 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:00:04,908 epoch 1 - iter 24/48 - loss 2.64646526 - time (sec): 14.18 - samples/sec: 1285.69 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:00:06,561 epoch 1 - iter 28/48 - loss 2.52516425 - time (sec): 15.84 - samples/sec: 1307.09 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:00:08,744 epoch 1 - iter 32/48 - loss 2.41186996 - time (sec): 18.02 - samples/sec: 1311.61 - lr: 0.000032 - momentum: 0.000000
2024-03-26 11:00:09,739 epoch 1 - iter 36/48 - loss 2.32081588 - time (sec): 19.02 - samples/sec: 1369.83 - lr: 0.000036 - momentum: 0.000000
2024-03-26 11:00:11,786 epoch 1 - iter 40/48 - loss 2.21383836 - time (sec): 21.06 - samples/sec: 1382.32 - lr: 0.000041 - momentum: 0.000000
2024-03-26 11:00:13,867 epoch 1 - iter 44/48 - loss 2.11699490 - time (sec): 23.14 - samples/sec: 1368.86 - lr: 0.000045 - momentum: 0.000000
2024-03-26 11:00:15,419 epoch 1 - iter 48/48 - loss 2.01053611 - time (sec): 24.70 - samples/sec: 1395.88 - lr: 0.000049 - momentum: 0.000000
2024-03-26 11:00:15,419 ----------------------------------------------------------------------------------------------------
2024-03-26 11:00:15,419 EPOCH 1 done: loss 2.0105 - lr: 0.000049
2024-03-26 11:00:16,279 DEV : loss 0.6016283631324768 - f1-score (micro avg) 0.5787
2024-03-26 11:00:16,281 saving best model
2024-03-26 11:00:16,555 ----------------------------------------------------------------------------------------------------
2024-03-26 11:00:19,245 epoch 2 - iter 4/48 - loss 0.70959951 - time (sec): 2.69 - samples/sec: 1153.63 - lr: 0.000050 - momentum: 0.000000
2024-03-26 11:00:21,418 epoch 2 - iter 8/48 - loss 0.70407287 - time (sec): 4.86 - samples/sec: 1360.00 - lr: 0.000049 - momentum: 0.000000
2024-03-26 11:00:23,773 epoch 2 - iter 12/48 - loss 0.65597292 - time (sec): 7.22 - samples/sec: 1282.88 - lr: 0.000049 - momentum: 0.000000
2024-03-26 11:00:25,873 epoch 2 - iter 16/48 - loss 0.61448768 - time (sec): 9.32 - samples/sec: 1278.96 - lr: 0.000048 - momentum: 0.000000
2024-03-26 11:00:28,044 epoch 2 - iter 20/48 - loss 0.57629162 - time (sec): 11.49 - samples/sec: 1305.28 - lr: 0.000048 - momentum: 0.000000
2024-03-26 11:00:31,219 epoch 2 - iter 24/48 - loss 0.52019540 - time (sec): 14.66 - samples/sec: 1261.90 - lr: 0.000047 - momentum: 0.000000
2024-03-26 11:00:33,666 epoch 2 - iter 28/48 - loss 0.50568930 - time (sec): 17.11 - samples/sec: 1258.99 - lr: 0.000047 - momentum: 0.000000
2024-03-26 11:00:35,456 epoch 2 - iter 32/48 - loss 0.48837358 - time (sec): 18.90 - samples/sec: 1276.55 - lr: 0.000046 - momentum: 0.000000
2024-03-26 11:00:36,527 epoch 2 - iter 36/48 - loss 0.47541041 - time (sec): 19.97 - samples/sec: 1324.58 - lr: 0.000046 - momentum: 0.000000
2024-03-26 11:00:38,421 epoch 2 - iter 40/48 - loss 0.46034741 - time (sec): 21.87 - samples/sec: 1344.51 - lr: 0.000046 - momentum: 0.000000
2024-03-26 11:00:40,494 epoch 2 - iter 44/48 - loss 0.45159252 - time (sec): 23.94 - samples/sec: 1341.26 - lr: 0.000045 - momentum: 0.000000
2024-03-26 11:00:41,950 epoch 2 - iter 48/48 - loss 0.44143919 - time (sec): 25.39 - samples/sec: 1357.48 - lr: 0.000045 - momentum: 0.000000
2024-03-26 11:00:41,950 ----------------------------------------------------------------------------------------------------
2024-03-26 11:00:41,950 EPOCH 2 done: loss 0.4414 - lr: 0.000045
2024-03-26 11:00:42,973 DEV : loss 0.3147665560245514 - f1-score (micro avg) 0.8072
2024-03-26 11:00:42,974 saving best model
2024-03-26 11:00:43,402 ----------------------------------------------------------------------------------------------------
2024-03-26 11:00:45,991 epoch 3 - iter 4/48 - loss 0.28698034 - time (sec): 2.59 - samples/sec: 1179.06 - lr: 0.000044 - momentum: 0.000000
2024-03-26 11:00:47,895 epoch 3 - iter 8/48 - loss 0.25658164 - time (sec): 4.49 - samples/sec: 1305.97 - lr: 0.000044 - momentum: 0.000000
2024-03-26 11:00:49,761 epoch 3 - iter 12/48 - loss 0.26858709 - time (sec): 6.36 - samples/sec: 1381.81 - lr: 0.000043 - momentum: 0.000000
2024-03-26 11:00:52,180 epoch 3 - iter 16/48 - loss 0.24605106 - time (sec): 8.78 - samples/sec: 1391.39 - lr: 0.000043 - momentum: 0.000000
2024-03-26 11:00:53,687 epoch 3 - iter 20/48 - loss 0.25301403 - time (sec): 10.29 - samples/sec: 1438.66 - lr: 0.000042 - momentum: 0.000000
2024-03-26 11:00:56,688 epoch 3 - iter 24/48 - loss 0.24057070 - time (sec): 13.29 - samples/sec: 1423.43 - lr: 0.000042 - momentum: 0.000000
2024-03-26 11:00:57,456 epoch 3 - iter 28/48 - loss 0.22678079 - time (sec): 14.05 - samples/sec: 1497.16 - lr: 0.000041 - momentum: 0.000000
2024-03-26 11:01:00,172 epoch 3 - iter 32/48 - loss 0.22006429 - time (sec): 16.77 - samples/sec: 1432.64 - lr: 0.000041 - momentum: 0.000000
2024-03-26 11:01:02,238 epoch 3 - iter 36/48 - loss 0.20958441 - time (sec): 18.84 - samples/sec: 1425.88 - lr: 0.000040 - momentum: 0.000000
2024-03-26 11:01:04,210 epoch 3 - iter 40/48 - loss 0.20985973 - time (sec): 20.81 - samples/sec: 1414.06 - lr: 0.000040 - momentum: 0.000000
2024-03-26 11:01:06,442 epoch 3 - iter 44/48 - loss 0.20453707 - time (sec): 23.04 - samples/sec: 1415.64 - lr: 0.000040 - momentum: 0.000000
2024-03-26 11:01:07,725 epoch 3 - iter 48/48 - loss 0.20307138 - time (sec): 24.32 - samples/sec: 1417.29 - lr: 0.000039 - momentum: 0.000000
2024-03-26 11:01:07,725 ----------------------------------------------------------------------------------------------------
2024-03-26 11:01:07,725 EPOCH 3 done: loss 0.2031 - lr: 0.000039
2024-03-26 11:01:08,671 DEV : loss 0.25678685307502747 - f1-score (micro avg) 0.8519
2024-03-26 11:01:08,672 saving best model
2024-03-26 11:01:09,109 ----------------------------------------------------------------------------------------------------
2024-03-26 11:01:10,611 epoch 4 - iter 4/48 - loss 0.12080968 - time (sec): 1.50 - samples/sec: 1816.16 - lr: 0.000039 - momentum: 0.000000
2024-03-26 11:01:13,125 epoch 4 - iter 8/48 - loss 0.15034122 - time (sec): 4.01 - samples/sec: 1429.16 - lr: 0.000038 - momentum: 0.000000
2024-03-26 11:01:15,244 epoch 4 - iter 12/48 - loss 0.16078746 - time (sec): 6.13 - samples/sec: 1424.34 - lr: 0.000038 - momentum: 0.000000
2024-03-26 11:01:17,467 epoch 4 - iter 16/48 - loss 0.14298013 - time (sec): 8.36 - samples/sec: 1432.75 - lr: 0.000037 - momentum: 0.000000
2024-03-26 11:01:20,491 epoch 4 - iter 20/48 - loss 0.13519036 - time (sec): 11.38 - samples/sec: 1360.97 - lr: 0.000037 - momentum: 0.000000
2024-03-26 11:01:21,975 epoch 4 - iter 24/48 - loss 0.13663630 - time (sec): 12.87 - samples/sec: 1400.91 - lr: 0.000036 - momentum: 0.000000
2024-03-26 11:01:23,514 epoch 4 - iter 28/48 - loss 0.13658070 - time (sec): 14.40 - samples/sec: 1439.83 - lr: 0.000036 - momentum: 0.000000
2024-03-26 11:01:26,144 epoch 4 - iter 32/48 - loss 0.13666749 - time (sec): 17.03 - samples/sec: 1422.91 - lr: 0.000035 - momentum: 0.000000
2024-03-26 11:01:27,183 epoch 4 - iter 36/48 - loss 0.13693895 - time (sec): 18.07 - samples/sec: 1470.16 - lr: 0.000035 - momentum: 0.000000
2024-03-26 11:01:29,617 epoch 4 - iter 40/48 - loss 0.13278247 - time (sec): 20.51 - samples/sec: 1424.10 - lr: 0.000034 - momentum: 0.000000
2024-03-26 11:01:31,480 epoch 4 - iter 44/48 - loss 0.13260496 - time (sec): 22.37 - samples/sec: 1442.33 - lr: 0.000034 - momentum: 0.000000
2024-03-26 11:01:32,883 epoch 4 - iter 48/48 - loss 0.13127512 - time (sec): 23.77 - samples/sec: 1450.02 - lr: 0.000034 - momentum: 0.000000
2024-03-26 11:01:32,884 ----------------------------------------------------------------------------------------------------
2024-03-26 11:01:32,884 EPOCH 4 done: loss 0.1313 - lr: 0.000034
2024-03-26 11:01:33,832 DEV : loss 0.21583451330661774 - f1-score (micro avg) 0.8756
2024-03-26 11:01:33,833 saving best model
2024-03-26 11:01:34,279 ----------------------------------------------------------------------------------------------------
2024-03-26 11:01:36,221 epoch 5 - iter 4/48 - loss 0.10870825 - time (sec): 1.94 - samples/sec: 1437.93 - lr: 0.000033 - momentum: 0.000000
2024-03-26 11:01:38,764 epoch 5 - iter 8/48 - loss 0.09524973 - time (sec): 4.48 - samples/sec: 1324.28 - lr: 0.000033 - momentum: 0.000000
2024-03-26 11:01:40,833 epoch 5 - iter 12/48 - loss 0.09712497 - time (sec): 6.55 - samples/sec: 1307.49 - lr: 0.000032 - momentum: 0.000000
2024-03-26 11:01:42,897 epoch 5 - iter 16/48 - loss 0.09416056 - time (sec): 8.62 - samples/sec: 1340.70 - lr: 0.000032 - momentum: 0.000000
2024-03-26 11:01:44,870 epoch 5 - iter 20/48 - loss 0.09859046 - time (sec): 10.59 - samples/sec: 1351.47 - lr: 0.000031 - momentum: 0.000000
2024-03-26 11:01:46,427 epoch 5 - iter 24/48 - loss 0.10256071 - time (sec): 12.15 - samples/sec: 1400.37 - lr: 0.000031 - momentum: 0.000000
2024-03-26 11:01:48,743 epoch 5 - iter 28/48 - loss 0.10312729 - time (sec): 14.46 - samples/sec: 1392.86 - lr: 0.000030 - momentum: 0.000000
2024-03-26 11:01:51,403 epoch 5 - iter 32/48 - loss 0.10114194 - time (sec): 17.12 - samples/sec: 1382.56 - lr: 0.000030 - momentum: 0.000000
2024-03-26 11:01:53,777 epoch 5 - iter 36/48 - loss 0.09523322 - time (sec): 19.50 - samples/sec: 1391.93 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:01:54,702 epoch 5 - iter 40/48 - loss 0.09494868 - time (sec): 20.42 - samples/sec: 1432.80 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:01:57,363 epoch 5 - iter 44/48 - loss 0.09114674 - time (sec): 23.08 - samples/sec: 1402.97 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:01:58,852 epoch 5 - iter 48/48 - loss 0.09130317 - time (sec): 24.57 - samples/sec: 1402.93 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:01:58,853 ----------------------------------------------------------------------------------------------------
2024-03-26 11:01:58,853 EPOCH 5 done: loss 0.0913 - lr: 0.000028
2024-03-26 11:01:59,809 DEV : loss 0.19779938459396362 - f1-score (micro avg) 0.8914
2024-03-26 11:01:59,812 saving best model
2024-03-26 11:02:00,262 ----------------------------------------------------------------------------------------------------
2024-03-26 11:02:02,268 epoch 6 - iter 4/48 - loss 0.05285658 - time (sec): 2.01 - samples/sec: 1318.38 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:02:04,480 epoch 6 - iter 8/48 - loss 0.07094565 - time (sec): 4.22 - samples/sec: 1311.76 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:02:06,334 epoch 6 - iter 12/48 - loss 0.07133832 - time (sec): 6.07 - samples/sec: 1423.40 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:02:08,617 epoch 6 - iter 16/48 - loss 0.07133402 - time (sec): 8.35 - samples/sec: 1375.26 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:02:10,436 epoch 6 - iter 20/48 - loss 0.07725707 - time (sec): 10.17 - samples/sec: 1379.46 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:02:12,944 epoch 6 - iter 24/48 - loss 0.07565556 - time (sec): 12.68 - samples/sec: 1357.85 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:02:14,899 epoch 6 - iter 28/48 - loss 0.07510084 - time (sec): 14.64 - samples/sec: 1351.33 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:02:17,426 epoch 6 - iter 32/48 - loss 0.07424382 - time (sec): 17.16 - samples/sec: 1331.71 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:02:20,980 epoch 6 - iter 36/48 - loss 0.06879978 - time (sec): 20.72 - samples/sec: 1287.17 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:02:22,685 epoch 6 - iter 40/48 - loss 0.06691408 - time (sec): 22.42 - samples/sec: 1317.93 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:02:24,577 epoch 6 - iter 44/48 - loss 0.06499311 - time (sec): 24.31 - samples/sec: 1320.84 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:02:25,873 epoch 6 - iter 48/48 - loss 0.06648827 - time (sec): 25.61 - samples/sec: 1346.03 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:02:25,873 ----------------------------------------------------------------------------------------------------
2024-03-26 11:02:25,873 EPOCH 6 done: loss 0.0665 - lr: 0.000023
2024-03-26 11:02:26,828 DEV : loss 0.1999371349811554 - f1-score (micro avg) 0.9161
2024-03-26 11:02:26,830 saving best model
2024-03-26 11:02:27,281 ----------------------------------------------------------------------------------------------------
2024-03-26 11:02:28,971 epoch 7 - iter 4/48 - loss 0.06036740 - time (sec): 1.69 - samples/sec: 1629.41 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:02:31,071 epoch 7 - iter 8/48 - loss 0.06185033 - time (sec): 3.79 - samples/sec: 1420.34 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:02:33,357 epoch 7 - iter 12/48 - loss 0.06731893 - time (sec): 6.07 - samples/sec: 1367.20 - lr: 0.000021 - momentum: 0.000000
2024-03-26 11:02:35,999 epoch 7 - iter 16/48 - loss 0.05862319 - time (sec): 8.71 - samples/sec: 1324.52 - lr: 0.000021 - momentum: 0.000000
2024-03-26 11:02:38,385 epoch 7 - iter 20/48 - loss 0.05493743 - time (sec): 11.10 - samples/sec: 1316.65 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:02:39,763 epoch 7 - iter 24/48 - loss 0.05293912 - time (sec): 12.48 - samples/sec: 1370.98 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:02:41,198 epoch 7 - iter 28/48 - loss 0.05212759 - time (sec): 13.91 - samples/sec: 1433.60 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:02:43,213 epoch 7 - iter 32/48 - loss 0.05081756 - time (sec): 15.93 - samples/sec: 1423.96 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:02:45,413 epoch 7 - iter 36/48 - loss 0.04903245 - time (sec): 18.13 - samples/sec: 1412.86 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:02:47,992 epoch 7 - iter 40/48 - loss 0.05091923 - time (sec): 20.71 - samples/sec: 1388.02 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:02:49,872 epoch 7 - iter 44/48 - loss 0.05031687 - time (sec): 22.59 - samples/sec: 1403.46 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:02:51,872 epoch 7 - iter 48/48 - loss 0.04903771 - time (sec): 24.59 - samples/sec: 1402.03 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:02:51,872 ----------------------------------------------------------------------------------------------------
2024-03-26 11:02:51,872 EPOCH 7 done: loss 0.0490 - lr: 0.000017
2024-03-26 11:02:52,826 DEV : loss 0.19628769159317017 - f1-score (micro avg) 0.91
2024-03-26 11:02:52,829 ----------------------------------------------------------------------------------------------------
2024-03-26 11:02:54,902 epoch 8 - iter 4/48 - loss 0.03574904 - time (sec): 2.07 - samples/sec: 1304.28 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:02:57,726 epoch 8 - iter 8/48 - loss 0.03594155 - time (sec): 4.90 - samples/sec: 1134.80 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:02:59,057 epoch 8 - iter 12/48 - loss 0.03729970 - time (sec): 6.23 - samples/sec: 1281.91 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:03:01,523 epoch 8 - iter 16/48 - loss 0.04291151 - time (sec): 8.69 - samples/sec: 1294.85 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:03:04,125 epoch 8 - iter 20/48 - loss 0.03659224 - time (sec): 11.30 - samples/sec: 1333.96 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:03:05,469 epoch 8 - iter 24/48 - loss 0.03664124 - time (sec): 12.64 - samples/sec: 1408.00 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:03:08,835 epoch 8 - iter 28/48 - loss 0.03886089 - time (sec): 16.01 - samples/sec: 1363.36 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:03:10,860 epoch 8 - iter 32/48 - loss 0.03830054 - time (sec): 18.03 - samples/sec: 1367.36 - lr: 0.000013 - momentum: 0.000000
2024-03-26 11:03:11,922 epoch 8 - iter 36/48 - loss 0.03798648 - time (sec): 19.09 - samples/sec: 1406.43 - lr: 0.000013 - momentum: 0.000000
2024-03-26 11:03:13,634 epoch 8 - iter 40/48 - loss 0.03809773 - time (sec): 20.80 - samples/sec: 1404.82 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:03:15,288 epoch 8 - iter 44/48 - loss 0.03863525 - time (sec): 22.46 - samples/sec: 1422.70 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:03:17,312 epoch 8 - iter 48/48 - loss 0.03975429 - time (sec): 24.48 - samples/sec: 1408.02 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:03:17,312 ----------------------------------------------------------------------------------------------------
2024-03-26 11:03:17,312 EPOCH 8 done: loss 0.0398 - lr: 0.000011
2024-03-26 11:03:18,283 DEV : loss 0.19287405908107758 - f1-score (micro avg) 0.9269
2024-03-26 11:03:18,284 saving best model
2024-03-26 11:03:18,696 ----------------------------------------------------------------------------------------------------
2024-03-26 11:03:20,629 epoch 9 - iter 4/48 - loss 0.01911719 - time (sec): 1.93 - samples/sec: 1386.69 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:03:23,880 epoch 9 - iter 8/48 - loss 0.01246336 - time (sec): 5.18 - samples/sec: 1204.95 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:03:25,618 epoch 9 - iter 12/48 - loss 0.01953089 - time (sec): 6.92 - samples/sec: 1255.75 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:03:27,891 epoch 9 - iter 16/48 - loss 0.02215764 - time (sec): 9.19 - samples/sec: 1253.18 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:03:30,272 epoch 9 - iter 20/48 - loss 0.02954547 - time (sec): 11.57 - samples/sec: 1278.31 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:03:32,531 epoch 9 - iter 24/48 - loss 0.03008158 - time (sec): 13.83 - samples/sec: 1292.82 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:03:34,919 epoch 9 - iter 28/48 - loss 0.02806782 - time (sec): 16.22 - samples/sec: 1292.06 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:03:37,371 epoch 9 - iter 32/48 - loss 0.02822729 - time (sec): 18.67 - samples/sec: 1285.90 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:03:39,285 epoch 9 - iter 36/48 - loss 0.03078142 - time (sec): 20.59 - samples/sec: 1300.40 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:03:41,552 epoch 9 - iter 40/48 - loss 0.03147072 - time (sec): 22.86 - samples/sec: 1290.12 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:03:43,705 epoch 9 - iter 44/48 - loss 0.03087065 - time (sec): 25.01 - samples/sec: 1303.67 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:03:44,519 epoch 9 - iter 48/48 - loss 0.03185010 - time (sec): 25.82 - samples/sec: 1335.01 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:03:44,519 ----------------------------------------------------------------------------------------------------
2024-03-26 11:03:44,519 EPOCH 9 done: loss 0.0319 - lr: 0.000006
2024-03-26 11:03:45,484 DEV : loss 0.19984783232212067 - f1-score (micro avg) 0.9272
2024-03-26 11:03:45,485 saving best model
2024-03-26 11:03:46,030 ----------------------------------------------------------------------------------------------------
2024-03-26 11:03:47,843 epoch 10 - iter 4/48 - loss 0.01174329 - time (sec): 1.81 - samples/sec: 1450.44 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:03:49,911 epoch 10 - iter 8/48 - loss 0.02116348 - time (sec): 3.88 - samples/sec: 1427.87 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:03:52,585 epoch 10 - iter 12/48 - loss 0.02314468 - time (sec): 6.55 - samples/sec: 1331.47 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:03:54,534 epoch 10 - iter 16/48 - loss 0.02792261 - time (sec): 8.50 - samples/sec: 1349.10 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:03:56,483 epoch 10 - iter 20/48 - loss 0.02603172 - time (sec): 10.45 - samples/sec: 1384.04 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:03:58,175 epoch 10 - iter 24/48 - loss 0.03120182 - time (sec): 12.14 - samples/sec: 1396.51 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:04:00,003 epoch 10 - iter 28/48 - loss 0.02955069 - time (sec): 13.97 - samples/sec: 1416.07 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:04:01,231 epoch 10 - iter 32/48 - loss 0.02961233 - time (sec): 15.20 - samples/sec: 1448.94 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:04:04,310 epoch 10 - iter 36/48 - loss 0.02651203 - time (sec): 18.28 - samples/sec: 1401.24 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:04:07,199 epoch 10 - iter 40/48 - loss 0.02941146 - time (sec): 21.17 - samples/sec: 1373.80 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:04:10,009 epoch 10 - iter 44/48 - loss 0.02745505 - time (sec): 23.98 - samples/sec: 1346.36 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:04:11,645 epoch 10 - iter 48/48 - loss 0.02670516 - time (sec): 25.61 - samples/sec: 1345.79 - lr: 0.000000 - momentum: 0.000000
2024-03-26 11:04:11,646 ----------------------------------------------------------------------------------------------------
2024-03-26 11:04:11,646 EPOCH 10 done: loss 0.0267 - lr: 0.000000
2024-03-26 11:04:12,623 DEV : loss 0.19916442036628723 - f1-score (micro avg) 0.9316
2024-03-26 11:04:12,624 saving best model
2024-03-26 11:04:13,361 ----------------------------------------------------------------------------------------------------
2024-03-26 11:04:13,362 Loading model from best epoch ...
2024-03-26 11:04:14,266 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 11:04:15,056
Results:
- F-score (micro) 0.9173
- F-score (macro) 0.697
- Accuracy 0.8496
By class:
precision recall f1-score support
Unternehmen 0.9115 0.8910 0.9011 266
Auslagerung 0.8842 0.9197 0.9016 249
Ort 0.9779 0.9925 0.9852 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.9117 0.9230 0.9173 649
macro avg 0.6934 0.7008 0.6970 649
weighted avg 0.9147 0.9230 0.9187 649
2024-03-26 11:04:15,056 ----------------------------------------------------------------------------------------------------
|