File size: 26,658 Bytes
829a558 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
2024-03-26 11:45:43,177 ----------------------------------------------------------------------------------------------------
2024-03-26 11:45:43,177 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(30001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 11:45:43,178 ----------------------------------------------------------------------------------------------------
2024-03-26 11:45:43,178 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 11:45:43,178 ----------------------------------------------------------------------------------------------------
2024-03-26 11:45:43,178 Train: 758 sentences
2024-03-26 11:45:43,178 (train_with_dev=False, train_with_test=False)
2024-03-26 11:45:43,178 ----------------------------------------------------------------------------------------------------
2024-03-26 11:45:43,178 Training Params:
2024-03-26 11:45:43,178 - learning_rate: "3e-05"
2024-03-26 11:45:43,178 - mini_batch_size: "16"
2024-03-26 11:45:43,178 - max_epochs: "10"
2024-03-26 11:45:43,178 - shuffle: "True"
2024-03-26 11:45:43,178 ----------------------------------------------------------------------------------------------------
2024-03-26 11:45:43,178 Plugins:
2024-03-26 11:45:43,178 - TensorboardLogger
2024-03-26 11:45:43,178 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 11:45:43,178 ----------------------------------------------------------------------------------------------------
2024-03-26 11:45:43,178 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 11:45:43,178 - metric: "('micro avg', 'f1-score')"
2024-03-26 11:45:43,178 ----------------------------------------------------------------------------------------------------
2024-03-26 11:45:43,178 Computation:
2024-03-26 11:45:43,178 - compute on device: cuda:0
2024-03-26 11:45:43,178 - embedding storage: none
2024-03-26 11:45:43,178 ----------------------------------------------------------------------------------------------------
2024-03-26 11:45:43,178 Model training base path: "flair-co-funer-german_bert_base-bs16-e10-lr3e-05-4"
2024-03-26 11:45:43,178 ----------------------------------------------------------------------------------------------------
2024-03-26 11:45:43,178 ----------------------------------------------------------------------------------------------------
2024-03-26 11:45:43,178 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 11:45:44,651 epoch 1 - iter 4/48 - loss 3.09549930 - time (sec): 1.47 - samples/sec: 1771.64 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:45:46,599 epoch 1 - iter 8/48 - loss 3.05860497 - time (sec): 3.42 - samples/sec: 1497.54 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:45:47,991 epoch 1 - iter 12/48 - loss 2.97301780 - time (sec): 4.81 - samples/sec: 1517.11 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:45:50,619 epoch 1 - iter 16/48 - loss 2.81904351 - time (sec): 7.44 - samples/sec: 1437.84 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:45:52,789 epoch 1 - iter 20/48 - loss 2.69072216 - time (sec): 9.61 - samples/sec: 1425.29 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:45:55,470 epoch 1 - iter 24/48 - loss 2.55781908 - time (sec): 12.29 - samples/sec: 1376.96 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:45:58,068 epoch 1 - iter 28/48 - loss 2.43219709 - time (sec): 14.89 - samples/sec: 1362.47 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:45:59,951 epoch 1 - iter 32/48 - loss 2.34102141 - time (sec): 16.77 - samples/sec: 1363.77 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:46:00,897 epoch 1 - iter 36/48 - loss 2.26816176 - time (sec): 17.72 - samples/sec: 1409.81 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:46:02,804 epoch 1 - iter 40/48 - loss 2.17382454 - time (sec): 19.63 - samples/sec: 1419.19 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:46:04,923 epoch 1 - iter 44/48 - loss 2.06590701 - time (sec): 21.74 - samples/sec: 1436.16 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:46:06,685 epoch 1 - iter 48/48 - loss 1.97932119 - time (sec): 23.51 - samples/sec: 1466.46 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:46:06,686 ----------------------------------------------------------------------------------------------------
2024-03-26 11:46:06,686 EPOCH 1 done: loss 1.9793 - lr: 0.000029
2024-03-26 11:46:07,557 DEV : loss 0.7610657215118408 - f1-score (micro avg) 0.523
2024-03-26 11:46:07,559 saving best model
2024-03-26 11:46:07,873 ----------------------------------------------------------------------------------------------------
2024-03-26 11:46:09,182 epoch 2 - iter 4/48 - loss 1.00588389 - time (sec): 1.31 - samples/sec: 1809.27 - lr: 0.000030 - momentum: 0.000000
2024-03-26 11:46:11,520 epoch 2 - iter 8/48 - loss 0.79773619 - time (sec): 3.65 - samples/sec: 1496.17 - lr: 0.000030 - momentum: 0.000000
2024-03-26 11:46:13,365 epoch 2 - iter 12/48 - loss 0.75438594 - time (sec): 5.49 - samples/sec: 1551.86 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:46:15,862 epoch 2 - iter 16/48 - loss 0.69088754 - time (sec): 7.99 - samples/sec: 1412.25 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:46:19,281 epoch 2 - iter 20/48 - loss 0.63021194 - time (sec): 11.41 - samples/sec: 1293.37 - lr: 0.000029 - momentum: 0.000000
2024-03-26 11:46:20,807 epoch 2 - iter 24/48 - loss 0.62522090 - time (sec): 12.93 - samples/sec: 1348.63 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:46:23,493 epoch 2 - iter 28/48 - loss 0.60290004 - time (sec): 15.62 - samples/sec: 1325.52 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:46:26,244 epoch 2 - iter 32/48 - loss 0.57675820 - time (sec): 18.37 - samples/sec: 1328.72 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:46:28,390 epoch 2 - iter 36/48 - loss 0.56861350 - time (sec): 20.52 - samples/sec: 1318.12 - lr: 0.000028 - momentum: 0.000000
2024-03-26 11:46:30,965 epoch 2 - iter 40/48 - loss 0.54982812 - time (sec): 23.09 - samples/sec: 1307.11 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:46:32,094 epoch 2 - iter 44/48 - loss 0.53992976 - time (sec): 24.22 - samples/sec: 1338.69 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:46:33,278 epoch 2 - iter 48/48 - loss 0.52605631 - time (sec): 25.40 - samples/sec: 1356.93 - lr: 0.000027 - momentum: 0.000000
2024-03-26 11:46:33,278 ----------------------------------------------------------------------------------------------------
2024-03-26 11:46:33,278 EPOCH 2 done: loss 0.5261 - lr: 0.000027
2024-03-26 11:46:34,230 DEV : loss 0.3057578504085541 - f1-score (micro avg) 0.8021
2024-03-26 11:46:34,232 saving best model
2024-03-26 11:46:34,699 ----------------------------------------------------------------------------------------------------
2024-03-26 11:46:36,914 epoch 3 - iter 4/48 - loss 0.30145275 - time (sec): 2.21 - samples/sec: 1108.67 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:46:38,470 epoch 3 - iter 8/48 - loss 0.25277524 - time (sec): 3.77 - samples/sec: 1270.27 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:46:41,075 epoch 3 - iter 12/48 - loss 0.26402459 - time (sec): 6.38 - samples/sec: 1220.17 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:46:43,227 epoch 3 - iter 16/48 - loss 0.26444662 - time (sec): 8.53 - samples/sec: 1250.49 - lr: 0.000026 - momentum: 0.000000
2024-03-26 11:46:45,257 epoch 3 - iter 20/48 - loss 0.26227190 - time (sec): 10.56 - samples/sec: 1311.31 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:46:47,499 epoch 3 - iter 24/48 - loss 0.25621355 - time (sec): 12.80 - samples/sec: 1335.61 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:46:50,084 epoch 3 - iter 28/48 - loss 0.24877474 - time (sec): 15.38 - samples/sec: 1296.51 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:46:52,756 epoch 3 - iter 32/48 - loss 0.24041754 - time (sec): 18.06 - samples/sec: 1273.36 - lr: 0.000025 - momentum: 0.000000
2024-03-26 11:46:54,934 epoch 3 - iter 36/48 - loss 0.23832241 - time (sec): 20.23 - samples/sec: 1279.35 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:46:57,306 epoch 3 - iter 40/48 - loss 0.24630100 - time (sec): 22.61 - samples/sec: 1296.33 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:46:59,921 epoch 3 - iter 44/48 - loss 0.24001606 - time (sec): 25.22 - samples/sec: 1280.99 - lr: 0.000024 - momentum: 0.000000
2024-03-26 11:47:01,444 epoch 3 - iter 48/48 - loss 0.24260838 - time (sec): 26.74 - samples/sec: 1288.93 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:47:01,444 ----------------------------------------------------------------------------------------------------
2024-03-26 11:47:01,444 EPOCH 3 done: loss 0.2426 - lr: 0.000023
2024-03-26 11:47:02,396 DEV : loss 0.24360495805740356 - f1-score (micro avg) 0.8595
2024-03-26 11:47:02,398 saving best model
2024-03-26 11:47:02,856 ----------------------------------------------------------------------------------------------------
2024-03-26 11:47:05,914 epoch 4 - iter 4/48 - loss 0.12795448 - time (sec): 3.06 - samples/sec: 1192.54 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:47:07,229 epoch 4 - iter 8/48 - loss 0.14859439 - time (sec): 4.37 - samples/sec: 1345.42 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:47:09,386 epoch 4 - iter 12/48 - loss 0.16381198 - time (sec): 6.53 - samples/sec: 1412.84 - lr: 0.000023 - momentum: 0.000000
2024-03-26 11:47:12,101 epoch 4 - iter 16/48 - loss 0.16311786 - time (sec): 9.24 - samples/sec: 1317.99 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:47:13,115 epoch 4 - iter 20/48 - loss 0.16463006 - time (sec): 10.26 - samples/sec: 1400.38 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:47:14,580 epoch 4 - iter 24/48 - loss 0.16449895 - time (sec): 11.72 - samples/sec: 1441.92 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:47:17,752 epoch 4 - iter 28/48 - loss 0.15737998 - time (sec): 14.89 - samples/sec: 1355.04 - lr: 0.000022 - momentum: 0.000000
2024-03-26 11:47:20,326 epoch 4 - iter 32/48 - loss 0.16722060 - time (sec): 17.47 - samples/sec: 1346.27 - lr: 0.000021 - momentum: 0.000000
2024-03-26 11:47:21,933 epoch 4 - iter 36/48 - loss 0.16726320 - time (sec): 19.08 - samples/sec: 1377.55 - lr: 0.000021 - momentum: 0.000000
2024-03-26 11:47:23,982 epoch 4 - iter 40/48 - loss 0.16404076 - time (sec): 21.12 - samples/sec: 1391.74 - lr: 0.000021 - momentum: 0.000000
2024-03-26 11:47:25,933 epoch 4 - iter 44/48 - loss 0.16294098 - time (sec): 23.08 - samples/sec: 1405.54 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:47:27,014 epoch 4 - iter 48/48 - loss 0.16439185 - time (sec): 24.16 - samples/sec: 1427.00 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:47:27,015 ----------------------------------------------------------------------------------------------------
2024-03-26 11:47:27,015 EPOCH 4 done: loss 0.1644 - lr: 0.000020
2024-03-26 11:47:27,966 DEV : loss 0.23152601718902588 - f1-score (micro avg) 0.8802
2024-03-26 11:47:27,968 saving best model
2024-03-26 11:47:28,459 ----------------------------------------------------------------------------------------------------
2024-03-26 11:47:29,577 epoch 5 - iter 4/48 - loss 0.19052126 - time (sec): 1.11 - samples/sec: 2287.23 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:47:31,576 epoch 5 - iter 8/48 - loss 0.17349732 - time (sec): 3.11 - samples/sec: 1665.56 - lr: 0.000020 - momentum: 0.000000
2024-03-26 11:47:33,746 epoch 5 - iter 12/48 - loss 0.15486907 - time (sec): 5.28 - samples/sec: 1515.53 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:47:36,149 epoch 5 - iter 16/48 - loss 0.14690282 - time (sec): 7.68 - samples/sec: 1443.38 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:47:38,420 epoch 5 - iter 20/48 - loss 0.14271247 - time (sec): 9.95 - samples/sec: 1374.60 - lr: 0.000019 - momentum: 0.000000
2024-03-26 11:47:40,647 epoch 5 - iter 24/48 - loss 0.13760899 - time (sec): 12.18 - samples/sec: 1394.70 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:47:42,374 epoch 5 - iter 28/48 - loss 0.13435191 - time (sec): 13.91 - samples/sec: 1415.02 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:47:44,537 epoch 5 - iter 32/48 - loss 0.12594520 - time (sec): 16.07 - samples/sec: 1437.44 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:47:46,006 epoch 5 - iter 36/48 - loss 0.12460472 - time (sec): 17.54 - samples/sec: 1459.35 - lr: 0.000018 - momentum: 0.000000
2024-03-26 11:47:48,705 epoch 5 - iter 40/48 - loss 0.11980810 - time (sec): 20.24 - samples/sec: 1424.31 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:47:51,717 epoch 5 - iter 44/48 - loss 0.11945876 - time (sec): 23.25 - samples/sec: 1377.39 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:47:53,286 epoch 5 - iter 48/48 - loss 0.12163729 - time (sec): 24.82 - samples/sec: 1388.84 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:47:53,286 ----------------------------------------------------------------------------------------------------
2024-03-26 11:47:53,286 EPOCH 5 done: loss 0.1216 - lr: 0.000017
2024-03-26 11:47:54,267 DEV : loss 0.18433180451393127 - f1-score (micro avg) 0.8884
2024-03-26 11:47:54,269 saving best model
2024-03-26 11:47:54,756 ----------------------------------------------------------------------------------------------------
2024-03-26 11:47:56,703 epoch 6 - iter 4/48 - loss 0.13051442 - time (sec): 1.95 - samples/sec: 1509.64 - lr: 0.000017 - momentum: 0.000000
2024-03-26 11:47:58,475 epoch 6 - iter 8/48 - loss 0.10157641 - time (sec): 3.72 - samples/sec: 1558.95 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:48:00,861 epoch 6 - iter 12/48 - loss 0.10287141 - time (sec): 6.10 - samples/sec: 1444.47 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:48:02,495 epoch 6 - iter 16/48 - loss 0.09403836 - time (sec): 7.74 - samples/sec: 1464.25 - lr: 0.000016 - momentum: 0.000000
2024-03-26 11:48:05,189 epoch 6 - iter 20/48 - loss 0.08683212 - time (sec): 10.43 - samples/sec: 1377.07 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:48:07,268 epoch 6 - iter 24/48 - loss 0.08891366 - time (sec): 12.51 - samples/sec: 1397.92 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:48:10,008 epoch 6 - iter 28/48 - loss 0.08855013 - time (sec): 15.25 - samples/sec: 1372.63 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:48:12,127 epoch 6 - iter 32/48 - loss 0.08678004 - time (sec): 17.37 - samples/sec: 1352.96 - lr: 0.000015 - momentum: 0.000000
2024-03-26 11:48:13,293 epoch 6 - iter 36/48 - loss 0.08791381 - time (sec): 18.54 - samples/sec: 1399.47 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:48:15,565 epoch 6 - iter 40/48 - loss 0.08879619 - time (sec): 20.81 - samples/sec: 1389.61 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:48:17,262 epoch 6 - iter 44/48 - loss 0.09174772 - time (sec): 22.50 - samples/sec: 1410.84 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:48:19,176 epoch 6 - iter 48/48 - loss 0.08921771 - time (sec): 24.42 - samples/sec: 1411.69 - lr: 0.000014 - momentum: 0.000000
2024-03-26 11:48:19,176 ----------------------------------------------------------------------------------------------------
2024-03-26 11:48:19,176 EPOCH 6 done: loss 0.0892 - lr: 0.000014
2024-03-26 11:48:20,141 DEV : loss 0.1853693574666977 - f1-score (micro avg) 0.9087
2024-03-26 11:48:20,143 saving best model
2024-03-26 11:48:20,630 ----------------------------------------------------------------------------------------------------
2024-03-26 11:48:22,266 epoch 7 - iter 4/48 - loss 0.06603823 - time (sec): 1.64 - samples/sec: 1709.98 - lr: 0.000013 - momentum: 0.000000
2024-03-26 11:48:24,417 epoch 7 - iter 8/48 - loss 0.05619435 - time (sec): 3.79 - samples/sec: 1616.26 - lr: 0.000013 - momentum: 0.000000
2024-03-26 11:48:26,762 epoch 7 - iter 12/48 - loss 0.05569263 - time (sec): 6.13 - samples/sec: 1436.63 - lr: 0.000013 - momentum: 0.000000
2024-03-26 11:48:28,025 epoch 7 - iter 16/48 - loss 0.06293055 - time (sec): 7.39 - samples/sec: 1522.02 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:48:30,201 epoch 7 - iter 20/48 - loss 0.06307589 - time (sec): 9.57 - samples/sec: 1498.89 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:48:31,777 epoch 7 - iter 24/48 - loss 0.06017691 - time (sec): 11.15 - samples/sec: 1544.12 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:48:33,986 epoch 7 - iter 28/48 - loss 0.06081892 - time (sec): 13.36 - samples/sec: 1503.01 - lr: 0.000012 - momentum: 0.000000
2024-03-26 11:48:36,785 epoch 7 - iter 32/48 - loss 0.06314787 - time (sec): 16.16 - samples/sec: 1441.57 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:48:38,902 epoch 7 - iter 36/48 - loss 0.06250353 - time (sec): 18.27 - samples/sec: 1436.17 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:48:40,055 epoch 7 - iter 40/48 - loss 0.06618433 - time (sec): 19.43 - samples/sec: 1467.11 - lr: 0.000011 - momentum: 0.000000
2024-03-26 11:48:42,708 epoch 7 - iter 44/48 - loss 0.06737787 - time (sec): 22.08 - samples/sec: 1452.17 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:48:43,879 epoch 7 - iter 48/48 - loss 0.06792919 - time (sec): 23.25 - samples/sec: 1482.72 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:48:43,880 ----------------------------------------------------------------------------------------------------
2024-03-26 11:48:43,880 EPOCH 7 done: loss 0.0679 - lr: 0.000010
2024-03-26 11:48:44,827 DEV : loss 0.18232010304927826 - f1-score (micro avg) 0.91
2024-03-26 11:48:44,829 saving best model
2024-03-26 11:48:45,300 ----------------------------------------------------------------------------------------------------
2024-03-26 11:48:47,467 epoch 8 - iter 4/48 - loss 0.03714663 - time (sec): 2.16 - samples/sec: 1280.39 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:48:50,167 epoch 8 - iter 8/48 - loss 0.03361336 - time (sec): 4.87 - samples/sec: 1241.21 - lr: 0.000010 - momentum: 0.000000
2024-03-26 11:48:51,850 epoch 8 - iter 12/48 - loss 0.03532371 - time (sec): 6.55 - samples/sec: 1295.03 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:48:54,494 epoch 8 - iter 16/48 - loss 0.04333594 - time (sec): 9.19 - samples/sec: 1252.38 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:48:56,236 epoch 8 - iter 20/48 - loss 0.04632785 - time (sec): 10.93 - samples/sec: 1299.41 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:48:57,768 epoch 8 - iter 24/48 - loss 0.05319808 - time (sec): 12.47 - samples/sec: 1363.58 - lr: 0.000009 - momentum: 0.000000
2024-03-26 11:48:59,674 epoch 8 - iter 28/48 - loss 0.05657064 - time (sec): 14.37 - samples/sec: 1387.59 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:49:02,385 epoch 8 - iter 32/48 - loss 0.05777782 - time (sec): 17.08 - samples/sec: 1375.19 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:49:04,885 epoch 8 - iter 36/48 - loss 0.05931562 - time (sec): 19.58 - samples/sec: 1365.05 - lr: 0.000008 - momentum: 0.000000
2024-03-26 11:49:07,154 epoch 8 - iter 40/48 - loss 0.05882360 - time (sec): 21.85 - samples/sec: 1346.48 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:49:09,580 epoch 8 - iter 44/48 - loss 0.05703173 - time (sec): 24.28 - samples/sec: 1330.58 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:49:11,182 epoch 8 - iter 48/48 - loss 0.05700452 - time (sec): 25.88 - samples/sec: 1331.98 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:49:11,182 ----------------------------------------------------------------------------------------------------
2024-03-26 11:49:11,182 EPOCH 8 done: loss 0.0570 - lr: 0.000007
2024-03-26 11:49:12,150 DEV : loss 0.1904592365026474 - f1-score (micro avg) 0.9126
2024-03-26 11:49:12,153 saving best model
2024-03-26 11:49:12,624 ----------------------------------------------------------------------------------------------------
2024-03-26 11:49:14,556 epoch 9 - iter 4/48 - loss 0.05954110 - time (sec): 1.93 - samples/sec: 1495.61 - lr: 0.000007 - momentum: 0.000000
2024-03-26 11:49:17,841 epoch 9 - iter 8/48 - loss 0.05659017 - time (sec): 5.22 - samples/sec: 1206.66 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:49:19,553 epoch 9 - iter 12/48 - loss 0.04714393 - time (sec): 6.93 - samples/sec: 1248.33 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:49:21,495 epoch 9 - iter 16/48 - loss 0.05412922 - time (sec): 8.87 - samples/sec: 1288.76 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:49:24,385 epoch 9 - iter 20/48 - loss 0.04842308 - time (sec): 11.76 - samples/sec: 1262.88 - lr: 0.000006 - momentum: 0.000000
2024-03-26 11:49:25,948 epoch 9 - iter 24/48 - loss 0.04794347 - time (sec): 13.32 - samples/sec: 1309.55 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:49:27,975 epoch 9 - iter 28/48 - loss 0.05034416 - time (sec): 15.35 - samples/sec: 1330.81 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:49:30,408 epoch 9 - iter 32/48 - loss 0.04906075 - time (sec): 17.78 - samples/sec: 1306.28 - lr: 0.000005 - momentum: 0.000000
2024-03-26 11:49:31,739 epoch 9 - iter 36/48 - loss 0.05395636 - time (sec): 19.11 - samples/sec: 1337.37 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:49:35,032 epoch 9 - iter 40/48 - loss 0.05096711 - time (sec): 22.41 - samples/sec: 1291.46 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:49:37,174 epoch 9 - iter 44/48 - loss 0.04799635 - time (sec): 24.55 - samples/sec: 1315.65 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:49:38,168 epoch 9 - iter 48/48 - loss 0.04898665 - time (sec): 25.54 - samples/sec: 1349.54 - lr: 0.000004 - momentum: 0.000000
2024-03-26 11:49:38,168 ----------------------------------------------------------------------------------------------------
2024-03-26 11:49:38,168 EPOCH 9 done: loss 0.0490 - lr: 0.000004
2024-03-26 11:49:39,113 DEV : loss 0.18231666088104248 - f1-score (micro avg) 0.9251
2024-03-26 11:49:39,114 saving best model
2024-03-26 11:49:39,563 ----------------------------------------------------------------------------------------------------
2024-03-26 11:49:41,526 epoch 10 - iter 4/48 - loss 0.05551802 - time (sec): 1.96 - samples/sec: 1317.05 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:49:44,390 epoch 10 - iter 8/48 - loss 0.03666070 - time (sec): 4.83 - samples/sec: 1198.44 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:49:46,447 epoch 10 - iter 12/48 - loss 0.04190061 - time (sec): 6.88 - samples/sec: 1265.75 - lr: 0.000003 - momentum: 0.000000
2024-03-26 11:49:48,559 epoch 10 - iter 16/48 - loss 0.04315321 - time (sec): 9.00 - samples/sec: 1352.32 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:49:49,427 epoch 10 - iter 20/48 - loss 0.04114819 - time (sec): 9.86 - samples/sec: 1431.18 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:49:51,170 epoch 10 - iter 24/48 - loss 0.04045979 - time (sec): 11.61 - samples/sec: 1457.39 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:49:52,116 epoch 10 - iter 28/48 - loss 0.03995345 - time (sec): 12.55 - samples/sec: 1522.22 - lr: 0.000002 - momentum: 0.000000
2024-03-26 11:49:54,497 epoch 10 - iter 32/48 - loss 0.03875589 - time (sec): 14.93 - samples/sec: 1489.79 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:49:57,098 epoch 10 - iter 36/48 - loss 0.04305678 - time (sec): 17.53 - samples/sec: 1453.98 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:49:59,095 epoch 10 - iter 40/48 - loss 0.04511330 - time (sec): 19.53 - samples/sec: 1444.56 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:50:01,791 epoch 10 - iter 44/48 - loss 0.04429458 - time (sec): 22.23 - samples/sec: 1430.59 - lr: 0.000001 - momentum: 0.000000
2024-03-26 11:50:03,422 epoch 10 - iter 48/48 - loss 0.04405461 - time (sec): 23.86 - samples/sec: 1444.82 - lr: 0.000000 - momentum: 0.000000
2024-03-26 11:50:03,423 ----------------------------------------------------------------------------------------------------
2024-03-26 11:50:03,423 EPOCH 10 done: loss 0.0441 - lr: 0.000000
2024-03-26 11:50:04,381 DEV : loss 0.18572011590003967 - f1-score (micro avg) 0.9186
2024-03-26 11:50:04,707 ----------------------------------------------------------------------------------------------------
2024-03-26 11:50:04,708 Loading model from best epoch ...
2024-03-26 11:50:05,626 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 11:50:06,416
Results:
- F-score (micro) 0.9084
- F-score (macro) 0.6914
- Accuracy 0.8345
By class:
precision recall f1-score support
Unternehmen 0.9144 0.8835 0.8987 266
Auslagerung 0.8534 0.9116 0.8816 249
Ort 0.9779 0.9925 0.9852 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.9002 0.9168 0.9084 649
macro avg 0.6864 0.6969 0.6914 649
weighted avg 0.9041 0.9168 0.9100 649
2024-03-26 11:50:06,416 ----------------------------------------------------------------------------------------------------
|