File size: 23,684 Bytes
d929138 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
2024-03-26 09:52:17,497 ----------------------------------------------------------------------------------------------------
2024-03-26 09:52:17,498 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 09:52:17,498 ----------------------------------------------------------------------------------------------------
2024-03-26 09:52:17,498 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 09:52:17,498 ----------------------------------------------------------------------------------------------------
2024-03-26 09:52:17,498 Train: 758 sentences
2024-03-26 09:52:17,498 (train_with_dev=False, train_with_test=False)
2024-03-26 09:52:17,498 ----------------------------------------------------------------------------------------------------
2024-03-26 09:52:17,498 Training Params:
2024-03-26 09:52:17,498 - learning_rate: "3e-05"
2024-03-26 09:52:17,498 - mini_batch_size: "8"
2024-03-26 09:52:17,498 - max_epochs: "10"
2024-03-26 09:52:17,498 - shuffle: "True"
2024-03-26 09:52:17,498 ----------------------------------------------------------------------------------------------------
2024-03-26 09:52:17,498 Plugins:
2024-03-26 09:52:17,498 - TensorboardLogger
2024-03-26 09:52:17,498 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 09:52:17,498 ----------------------------------------------------------------------------------------------------
2024-03-26 09:52:17,498 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 09:52:17,498 - metric: "('micro avg', 'f1-score')"
2024-03-26 09:52:17,498 ----------------------------------------------------------------------------------------------------
2024-03-26 09:52:17,498 Computation:
2024-03-26 09:52:17,498 - compute on device: cuda:0
2024-03-26 09:52:17,498 - embedding storage: none
2024-03-26 09:52:17,498 ----------------------------------------------------------------------------------------------------
2024-03-26 09:52:17,498 Model training base path: "flair-co-funer-gbert_base-bs8-e10-lr3e-05-2"
2024-03-26 09:52:17,498 ----------------------------------------------------------------------------------------------------
2024-03-26 09:52:17,498 ----------------------------------------------------------------------------------------------------
2024-03-26 09:52:17,498 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 09:52:19,319 epoch 1 - iter 9/95 - loss 3.53961513 - time (sec): 1.82 - samples/sec: 1935.43 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:52:21,403 epoch 1 - iter 18/95 - loss 3.35595519 - time (sec): 3.90 - samples/sec: 1845.85 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:52:22,948 epoch 1 - iter 27/95 - loss 3.14534554 - time (sec): 5.45 - samples/sec: 1849.91 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:52:24,870 epoch 1 - iter 36/95 - loss 2.90571609 - time (sec): 7.37 - samples/sec: 1872.40 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:52:26,936 epoch 1 - iter 45/95 - loss 2.71758541 - time (sec): 9.44 - samples/sec: 1806.60 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:52:28,892 epoch 1 - iter 54/95 - loss 2.55098613 - time (sec): 11.39 - samples/sec: 1782.26 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:52:30,410 epoch 1 - iter 63/95 - loss 2.42576159 - time (sec): 12.91 - samples/sec: 1791.76 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:52:31,667 epoch 1 - iter 72/95 - loss 2.29327756 - time (sec): 14.17 - samples/sec: 1845.67 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:52:33,207 epoch 1 - iter 81/95 - loss 2.17212532 - time (sec): 15.71 - samples/sec: 1872.59 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:52:35,142 epoch 1 - iter 90/95 - loss 2.05564105 - time (sec): 17.64 - samples/sec: 1848.21 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:52:36,186 ----------------------------------------------------------------------------------------------------
2024-03-26 09:52:36,186 EPOCH 1 done: loss 1.9901 - lr: 0.000028
2024-03-26 09:52:37,129 DEV : loss 0.5836721062660217 - f1-score (micro avg) 0.6361
2024-03-26 09:52:37,130 saving best model
2024-03-26 09:52:37,391 ----------------------------------------------------------------------------------------------------
2024-03-26 09:52:38,699 epoch 2 - iter 9/95 - loss 0.88000104 - time (sec): 1.31 - samples/sec: 2480.75 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:52:40,563 epoch 2 - iter 18/95 - loss 0.74813269 - time (sec): 3.17 - samples/sec: 2166.18 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:52:43,368 epoch 2 - iter 27/95 - loss 0.62424459 - time (sec): 5.98 - samples/sec: 1934.01 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:52:45,428 epoch 2 - iter 36/95 - loss 0.58579327 - time (sec): 8.04 - samples/sec: 1850.08 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:52:47,178 epoch 2 - iter 45/95 - loss 0.54630504 - time (sec): 9.79 - samples/sec: 1836.70 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:52:49,258 epoch 2 - iter 54/95 - loss 0.52267916 - time (sec): 11.87 - samples/sec: 1793.00 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:52:50,788 epoch 2 - iter 63/95 - loss 0.51834858 - time (sec): 13.40 - samples/sec: 1816.83 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:52:52,271 epoch 2 - iter 72/95 - loss 0.50348487 - time (sec): 14.88 - samples/sec: 1843.68 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:52:53,434 epoch 2 - iter 81/95 - loss 0.49372946 - time (sec): 16.04 - samples/sec: 1878.09 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:52:54,709 epoch 2 - iter 90/95 - loss 0.48365737 - time (sec): 17.32 - samples/sec: 1899.73 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:52:55,666 ----------------------------------------------------------------------------------------------------
2024-03-26 09:52:55,666 EPOCH 2 done: loss 0.4715 - lr: 0.000027
2024-03-26 09:52:56,562 DEV : loss 0.2874722480773926 - f1-score (micro avg) 0.806
2024-03-26 09:52:56,563 saving best model
2024-03-26 09:52:56,995 ----------------------------------------------------------------------------------------------------
2024-03-26 09:52:59,002 epoch 3 - iter 9/95 - loss 0.25536477 - time (sec): 2.00 - samples/sec: 1660.64 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:53:01,050 epoch 3 - iter 18/95 - loss 0.27949133 - time (sec): 4.05 - samples/sec: 1792.30 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:53:02,010 epoch 3 - iter 27/95 - loss 0.29476589 - time (sec): 5.01 - samples/sec: 1919.91 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:53:03,726 epoch 3 - iter 36/95 - loss 0.28846810 - time (sec): 6.73 - samples/sec: 1885.86 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:53:04,970 epoch 3 - iter 45/95 - loss 0.28835106 - time (sec): 7.97 - samples/sec: 1931.88 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:53:06,994 epoch 3 - iter 54/95 - loss 0.28592424 - time (sec): 10.00 - samples/sec: 1870.19 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:53:08,603 epoch 3 - iter 63/95 - loss 0.27925872 - time (sec): 11.61 - samples/sec: 1880.71 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:53:10,108 epoch 3 - iter 72/95 - loss 0.27217869 - time (sec): 13.11 - samples/sec: 1890.02 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:53:11,883 epoch 3 - iter 81/95 - loss 0.26500557 - time (sec): 14.89 - samples/sec: 1878.07 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:53:14,475 epoch 3 - iter 90/95 - loss 0.24216706 - time (sec): 17.48 - samples/sec: 1871.14 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:53:15,563 ----------------------------------------------------------------------------------------------------
2024-03-26 09:53:15,563 EPOCH 3 done: loss 0.2400 - lr: 0.000024
2024-03-26 09:53:16,458 DEV : loss 0.23845794796943665 - f1-score (micro avg) 0.8729
2024-03-26 09:53:16,459 saving best model
2024-03-26 09:53:16,886 ----------------------------------------------------------------------------------------------------
2024-03-26 09:53:18,564 epoch 4 - iter 9/95 - loss 0.19907058 - time (sec): 1.68 - samples/sec: 1917.48 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:53:20,539 epoch 4 - iter 18/95 - loss 0.18225053 - time (sec): 3.65 - samples/sec: 1844.67 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:53:21,759 epoch 4 - iter 27/95 - loss 0.17780171 - time (sec): 4.87 - samples/sec: 1932.07 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:53:23,404 epoch 4 - iter 36/95 - loss 0.17396565 - time (sec): 6.52 - samples/sec: 1904.99 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:53:25,531 epoch 4 - iter 45/95 - loss 0.17094092 - time (sec): 8.64 - samples/sec: 1847.31 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:53:27,044 epoch 4 - iter 54/95 - loss 0.17620156 - time (sec): 10.16 - samples/sec: 1858.30 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:53:29,472 epoch 4 - iter 63/95 - loss 0.16912771 - time (sec): 12.58 - samples/sec: 1811.77 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:53:31,951 epoch 4 - iter 72/95 - loss 0.15886167 - time (sec): 15.06 - samples/sec: 1775.85 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:53:33,379 epoch 4 - iter 81/95 - loss 0.15583393 - time (sec): 16.49 - samples/sec: 1782.01 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:53:35,144 epoch 4 - iter 90/95 - loss 0.15591548 - time (sec): 18.26 - samples/sec: 1781.89 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:53:36,253 ----------------------------------------------------------------------------------------------------
2024-03-26 09:53:36,253 EPOCH 4 done: loss 0.1525 - lr: 0.000020
2024-03-26 09:53:37,151 DEV : loss 0.20792341232299805 - f1-score (micro avg) 0.8679
2024-03-26 09:53:37,152 ----------------------------------------------------------------------------------------------------
2024-03-26 09:53:38,113 epoch 5 - iter 9/95 - loss 0.09800132 - time (sec): 0.96 - samples/sec: 2144.46 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:53:39,777 epoch 5 - iter 18/95 - loss 0.10274591 - time (sec): 2.62 - samples/sec: 2027.83 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:53:42,223 epoch 5 - iter 27/95 - loss 0.10010196 - time (sec): 5.07 - samples/sec: 1797.73 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:53:44,045 epoch 5 - iter 36/95 - loss 0.10033903 - time (sec): 6.89 - samples/sec: 1799.99 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:53:45,998 epoch 5 - iter 45/95 - loss 0.09981141 - time (sec): 8.85 - samples/sec: 1766.90 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:53:47,592 epoch 5 - iter 54/95 - loss 0.10391988 - time (sec): 10.44 - samples/sec: 1804.89 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:53:49,927 epoch 5 - iter 63/95 - loss 0.10398408 - time (sec): 12.77 - samples/sec: 1792.95 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:53:51,331 epoch 5 - iter 72/95 - loss 0.11093906 - time (sec): 14.18 - samples/sec: 1811.66 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:53:53,221 epoch 5 - iter 81/95 - loss 0.10674185 - time (sec): 16.07 - samples/sec: 1787.12 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:53:55,065 epoch 5 - iter 90/95 - loss 0.10551264 - time (sec): 17.91 - samples/sec: 1789.51 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:53:56,407 ----------------------------------------------------------------------------------------------------
2024-03-26 09:53:56,407 EPOCH 5 done: loss 0.1066 - lr: 0.000017
2024-03-26 09:53:57,304 DEV : loss 0.1804860234260559 - f1-score (micro avg) 0.9197
2024-03-26 09:53:57,305 saving best model
2024-03-26 09:53:57,730 ----------------------------------------------------------------------------------------------------
2024-03-26 09:53:59,105 epoch 6 - iter 9/95 - loss 0.07972278 - time (sec): 1.37 - samples/sec: 2096.57 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:54:01,256 epoch 6 - iter 18/95 - loss 0.08118019 - time (sec): 3.52 - samples/sec: 2035.01 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:54:02,812 epoch 6 - iter 27/95 - loss 0.07772860 - time (sec): 5.08 - samples/sec: 1976.72 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:54:04,780 epoch 6 - iter 36/95 - loss 0.07928132 - time (sec): 7.05 - samples/sec: 1915.68 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:54:06,910 epoch 6 - iter 45/95 - loss 0.08814070 - time (sec): 9.18 - samples/sec: 1935.68 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:54:08,096 epoch 6 - iter 54/95 - loss 0.08402558 - time (sec): 10.36 - samples/sec: 1950.71 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:54:09,157 epoch 6 - iter 63/95 - loss 0.08522702 - time (sec): 11.42 - samples/sec: 1970.67 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:54:10,682 epoch 6 - iter 72/95 - loss 0.07933407 - time (sec): 12.95 - samples/sec: 1971.66 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:54:12,675 epoch 6 - iter 81/95 - loss 0.07836560 - time (sec): 14.94 - samples/sec: 1956.42 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:54:14,661 epoch 6 - iter 90/95 - loss 0.07745159 - time (sec): 16.93 - samples/sec: 1942.78 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:54:15,584 ----------------------------------------------------------------------------------------------------
2024-03-26 09:54:15,584 EPOCH 6 done: loss 0.0758 - lr: 0.000014
2024-03-26 09:54:16,481 DEV : loss 0.16234630346298218 - f1-score (micro avg) 0.9135
2024-03-26 09:54:16,482 ----------------------------------------------------------------------------------------------------
2024-03-26 09:54:17,909 epoch 7 - iter 9/95 - loss 0.04375441 - time (sec): 1.43 - samples/sec: 1863.36 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:54:19,705 epoch 7 - iter 18/95 - loss 0.06014365 - time (sec): 3.22 - samples/sec: 1798.11 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:54:21,311 epoch 7 - iter 27/95 - loss 0.05965848 - time (sec): 4.83 - samples/sec: 1889.05 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:54:23,028 epoch 7 - iter 36/95 - loss 0.05912689 - time (sec): 6.55 - samples/sec: 1837.26 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:54:24,390 epoch 7 - iter 45/95 - loss 0.05753334 - time (sec): 7.91 - samples/sec: 1854.27 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:54:26,446 epoch 7 - iter 54/95 - loss 0.05727675 - time (sec): 9.96 - samples/sec: 1799.19 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:54:28,682 epoch 7 - iter 63/95 - loss 0.05724513 - time (sec): 12.20 - samples/sec: 1749.98 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:54:31,233 epoch 7 - iter 72/95 - loss 0.06278608 - time (sec): 14.75 - samples/sec: 1747.69 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:54:33,184 epoch 7 - iter 81/95 - loss 0.06518938 - time (sec): 16.70 - samples/sec: 1754.83 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:54:35,156 epoch 7 - iter 90/95 - loss 0.06685056 - time (sec): 18.67 - samples/sec: 1755.32 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:54:36,048 ----------------------------------------------------------------------------------------------------
2024-03-26 09:54:36,048 EPOCH 7 done: loss 0.0653 - lr: 0.000010
2024-03-26 09:54:36,945 DEV : loss 0.17551575601100922 - f1-score (micro avg) 0.9174
2024-03-26 09:54:36,946 ----------------------------------------------------------------------------------------------------
2024-03-26 09:54:39,192 epoch 8 - iter 9/95 - loss 0.06359199 - time (sec): 2.25 - samples/sec: 1687.40 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:54:40,736 epoch 8 - iter 18/95 - loss 0.06088028 - time (sec): 3.79 - samples/sec: 1818.42 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:54:42,902 epoch 8 - iter 27/95 - loss 0.06545372 - time (sec): 5.96 - samples/sec: 1775.32 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:54:44,443 epoch 8 - iter 36/95 - loss 0.06062523 - time (sec): 7.50 - samples/sec: 1799.86 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:54:46,311 epoch 8 - iter 45/95 - loss 0.05645313 - time (sec): 9.36 - samples/sec: 1777.81 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:54:47,991 epoch 8 - iter 54/95 - loss 0.05908816 - time (sec): 11.04 - samples/sec: 1788.68 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:54:49,789 epoch 8 - iter 63/95 - loss 0.05709152 - time (sec): 12.84 - samples/sec: 1788.13 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:54:51,097 epoch 8 - iter 72/95 - loss 0.05568644 - time (sec): 14.15 - samples/sec: 1807.94 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:54:52,919 epoch 8 - iter 81/95 - loss 0.05439142 - time (sec): 15.97 - samples/sec: 1833.11 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:54:55,325 epoch 8 - iter 90/95 - loss 0.05191514 - time (sec): 18.38 - samples/sec: 1794.74 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:54:56,129 ----------------------------------------------------------------------------------------------------
2024-03-26 09:54:56,129 EPOCH 8 done: loss 0.0526 - lr: 0.000007
2024-03-26 09:54:57,031 DEV : loss 0.18304860591888428 - f1-score (micro avg) 0.9193
2024-03-26 09:54:57,032 ----------------------------------------------------------------------------------------------------
2024-03-26 09:54:58,782 epoch 9 - iter 9/95 - loss 0.06565949 - time (sec): 1.75 - samples/sec: 1941.54 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:55:01,043 epoch 9 - iter 18/95 - loss 0.04730623 - time (sec): 4.01 - samples/sec: 1728.97 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:55:02,922 epoch 9 - iter 27/95 - loss 0.05364398 - time (sec): 5.89 - samples/sec: 1771.72 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:55:04,461 epoch 9 - iter 36/95 - loss 0.05374813 - time (sec): 7.43 - samples/sec: 1786.99 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:55:05,866 epoch 9 - iter 45/95 - loss 0.04853111 - time (sec): 8.83 - samples/sec: 1826.08 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:55:07,268 epoch 9 - iter 54/95 - loss 0.04542395 - time (sec): 10.24 - samples/sec: 1879.04 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:55:09,076 epoch 9 - iter 63/95 - loss 0.04888173 - time (sec): 12.04 - samples/sec: 1887.19 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:55:11,075 epoch 9 - iter 72/95 - loss 0.04857160 - time (sec): 14.04 - samples/sec: 1860.12 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:55:13,343 epoch 9 - iter 81/95 - loss 0.04878537 - time (sec): 16.31 - samples/sec: 1819.63 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:55:15,069 epoch 9 - iter 90/95 - loss 0.04736803 - time (sec): 18.04 - samples/sec: 1835.02 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:55:15,655 ----------------------------------------------------------------------------------------------------
2024-03-26 09:55:15,655 EPOCH 9 done: loss 0.0468 - lr: 0.000004
2024-03-26 09:55:16,548 DEV : loss 0.17421986162662506 - f1-score (micro avg) 0.9209
2024-03-26 09:55:16,549 saving best model
2024-03-26 09:55:16,974 ----------------------------------------------------------------------------------------------------
2024-03-26 09:55:19,020 epoch 10 - iter 9/95 - loss 0.01627610 - time (sec): 2.04 - samples/sec: 1889.72 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:55:20,773 epoch 10 - iter 18/95 - loss 0.03077255 - time (sec): 3.80 - samples/sec: 1870.99 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:55:21,875 epoch 10 - iter 27/95 - loss 0.02772412 - time (sec): 4.90 - samples/sec: 1944.17 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:55:23,321 epoch 10 - iter 36/95 - loss 0.03377579 - time (sec): 6.34 - samples/sec: 1973.31 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:55:25,258 epoch 10 - iter 45/95 - loss 0.03917926 - time (sec): 8.28 - samples/sec: 1905.99 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:55:26,345 epoch 10 - iter 54/95 - loss 0.04335361 - time (sec): 9.37 - samples/sec: 1953.72 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:55:27,567 epoch 10 - iter 63/95 - loss 0.04067493 - time (sec): 10.59 - samples/sec: 1981.28 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:55:29,473 epoch 10 - iter 72/95 - loss 0.04059246 - time (sec): 12.50 - samples/sec: 1975.98 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:55:32,107 epoch 10 - iter 81/95 - loss 0.03957121 - time (sec): 15.13 - samples/sec: 1935.90 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:55:34,114 epoch 10 - iter 90/95 - loss 0.03941973 - time (sec): 17.14 - samples/sec: 1914.50 - lr: 0.000000 - momentum: 0.000000
2024-03-26 09:55:35,030 ----------------------------------------------------------------------------------------------------
2024-03-26 09:55:35,030 EPOCH 10 done: loss 0.0395 - lr: 0.000000
2024-03-26 09:55:35,932 DEV : loss 0.17624321579933167 - f1-score (micro avg) 0.9248
2024-03-26 09:55:35,933 saving best model
2024-03-26 09:55:36,648 ----------------------------------------------------------------------------------------------------
2024-03-26 09:55:36,649 Loading model from best epoch ...
2024-03-26 09:55:37,535 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 09:55:38,304
Results:
- F-score (micro) 0.907
- F-score (macro) 0.69
- Accuracy 0.8357
By class:
precision recall f1-score support
Unternehmen 0.9180 0.8835 0.9004 266
Auslagerung 0.8470 0.9116 0.8781 249
Ort 0.9708 0.9925 0.9815 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.8974 0.9168 0.9070 649
macro avg 0.6839 0.6969 0.6900 649
weighted avg 0.9017 0.9168 0.9086 649
2024-03-26 09:55:38,304 ----------------------------------------------------------------------------------------------------
|