File size: 26,607 Bytes
ffe4aa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
2024-03-26 09:43:20,711 ----------------------------------------------------------------------------------------------------
2024-03-26 09:43:20,711 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 09:43:20,712 ----------------------------------------------------------------------------------------------------
2024-03-26 09:43:20,712 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 09:43:20,712 ----------------------------------------------------------------------------------------------------
2024-03-26 09:43:20,712 Train: 758 sentences
2024-03-26 09:43:20,712 (train_with_dev=False, train_with_test=False)
2024-03-26 09:43:20,712 ----------------------------------------------------------------------------------------------------
2024-03-26 09:43:20,712 Training Params:
2024-03-26 09:43:20,712 - learning_rate: "3e-05"
2024-03-26 09:43:20,712 - mini_batch_size: "16"
2024-03-26 09:43:20,712 - max_epochs: "10"
2024-03-26 09:43:20,712 - shuffle: "True"
2024-03-26 09:43:20,712 ----------------------------------------------------------------------------------------------------
2024-03-26 09:43:20,712 Plugins:
2024-03-26 09:43:20,712 - TensorboardLogger
2024-03-26 09:43:20,712 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 09:43:20,712 ----------------------------------------------------------------------------------------------------
2024-03-26 09:43:20,712 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 09:43:20,712 - metric: "('micro avg', 'f1-score')"
2024-03-26 09:43:20,712 ----------------------------------------------------------------------------------------------------
2024-03-26 09:43:20,712 Computation:
2024-03-26 09:43:20,712 - compute on device: cuda:0
2024-03-26 09:43:20,712 - embedding storage: none
2024-03-26 09:43:20,712 ----------------------------------------------------------------------------------------------------
2024-03-26 09:43:20,712 Model training base path: "flair-co-funer-gbert_base-bs16-e10-lr3e-05-2"
2024-03-26 09:43:20,712 ----------------------------------------------------------------------------------------------------
2024-03-26 09:43:20,712 ----------------------------------------------------------------------------------------------------
2024-03-26 09:43:20,712 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 09:43:22,441 epoch 1 - iter 4/48 - loss 3.54097837 - time (sec): 1.73 - samples/sec: 1747.68 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:43:24,541 epoch 1 - iter 8/48 - loss 3.46732419 - time (sec): 3.83 - samples/sec: 1621.38 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:43:26,386 epoch 1 - iter 12/48 - loss 3.37699881 - time (sec): 5.67 - samples/sec: 1571.13 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:43:28,400 epoch 1 - iter 16/48 - loss 3.22918949 - time (sec): 7.69 - samples/sec: 1578.39 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:43:30,598 epoch 1 - iter 20/48 - loss 3.05714722 - time (sec): 9.89 - samples/sec: 1545.81 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:43:33,642 epoch 1 - iter 24/48 - loss 2.91610601 - time (sec): 12.93 - samples/sec: 1405.97 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:43:36,053 epoch 1 - iter 28/48 - loss 2.77155856 - time (sec): 15.34 - samples/sec: 1389.33 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:43:36,876 epoch 1 - iter 32/48 - loss 2.67641615 - time (sec): 16.16 - samples/sec: 1444.62 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:43:38,140 epoch 1 - iter 36/48 - loss 2.56751661 - time (sec): 17.43 - samples/sec: 1500.56 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:43:40,010 epoch 1 - iter 40/48 - loss 2.47153744 - time (sec): 19.30 - samples/sec: 1507.46 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:43:41,898 epoch 1 - iter 44/48 - loss 2.37591552 - time (sec): 21.19 - samples/sec: 1508.12 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:43:43,251 epoch 1 - iter 48/48 - loss 2.29457447 - time (sec): 22.54 - samples/sec: 1529.47 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:43:43,251 ----------------------------------------------------------------------------------------------------
2024-03-26 09:43:43,251 EPOCH 1 done: loss 2.2946 - lr: 0.000029
2024-03-26 09:43:44,060 DEV : loss 0.868198812007904 - f1-score (micro avg) 0.3671
2024-03-26 09:43:44,061 saving best model
2024-03-26 09:43:44,339 ----------------------------------------------------------------------------------------------------
2024-03-26 09:43:45,643 epoch 2 - iter 4/48 - loss 1.21391336 - time (sec): 1.30 - samples/sec: 2226.04 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:43:47,473 epoch 2 - iter 8/48 - loss 1.01735114 - time (sec): 3.13 - samples/sec: 1946.30 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:43:50,883 epoch 2 - iter 12/48 - loss 0.91073315 - time (sec): 6.54 - samples/sec: 1555.26 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:43:53,349 epoch 2 - iter 16/48 - loss 0.84066048 - time (sec): 9.01 - samples/sec: 1478.39 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:43:55,980 epoch 2 - iter 20/48 - loss 0.78893352 - time (sec): 11.64 - samples/sec: 1427.19 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:43:57,851 epoch 2 - iter 24/48 - loss 0.74386229 - time (sec): 13.51 - samples/sec: 1426.93 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:43:59,611 epoch 2 - iter 28/48 - loss 0.72707811 - time (sec): 15.27 - samples/sec: 1436.22 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:44:01,311 epoch 2 - iter 32/48 - loss 0.70317913 - time (sec): 16.97 - samples/sec: 1449.78 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:44:03,143 epoch 2 - iter 36/48 - loss 0.68201229 - time (sec): 18.80 - samples/sec: 1458.93 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:44:04,149 epoch 2 - iter 40/48 - loss 0.66472757 - time (sec): 19.81 - samples/sec: 1506.96 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:44:05,571 epoch 2 - iter 44/48 - loss 0.65567832 - time (sec): 21.23 - samples/sec: 1526.81 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:44:07,083 epoch 2 - iter 48/48 - loss 0.63834426 - time (sec): 22.74 - samples/sec: 1515.70 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:44:07,083 ----------------------------------------------------------------------------------------------------
2024-03-26 09:44:07,083 EPOCH 2 done: loss 0.6383 - lr: 0.000027
2024-03-26 09:44:07,970 DEV : loss 0.3501518666744232 - f1-score (micro avg) 0.7641
2024-03-26 09:44:07,971 saving best model
2024-03-26 09:44:08,428 ----------------------------------------------------------------------------------------------------
2024-03-26 09:44:11,061 epoch 3 - iter 4/48 - loss 0.38909483 - time (sec): 2.63 - samples/sec: 1143.78 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:44:13,193 epoch 3 - iter 8/48 - loss 0.38382097 - time (sec): 4.76 - samples/sec: 1333.23 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:44:14,762 epoch 3 - iter 12/48 - loss 0.39785448 - time (sec): 6.33 - samples/sec: 1401.18 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:44:16,497 epoch 3 - iter 16/48 - loss 0.36688780 - time (sec): 8.07 - samples/sec: 1408.90 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:44:17,643 epoch 3 - iter 20/48 - loss 0.36697264 - time (sec): 9.21 - samples/sec: 1485.03 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:44:19,479 epoch 3 - iter 24/48 - loss 0.37183904 - time (sec): 11.05 - samples/sec: 1489.25 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:44:21,917 epoch 3 - iter 28/48 - loss 0.36591246 - time (sec): 13.49 - samples/sec: 1434.46 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:44:23,760 epoch 3 - iter 32/48 - loss 0.35952677 - time (sec): 15.33 - samples/sec: 1444.19 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:44:25,187 epoch 3 - iter 36/48 - loss 0.35091038 - time (sec): 16.76 - samples/sec: 1478.74 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:44:27,447 epoch 3 - iter 40/48 - loss 0.33792769 - time (sec): 19.02 - samples/sec: 1451.82 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:44:30,704 epoch 3 - iter 44/48 - loss 0.31414364 - time (sec): 22.27 - samples/sec: 1446.67 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:44:31,961 epoch 3 - iter 48/48 - loss 0.30774544 - time (sec): 23.53 - samples/sec: 1464.97 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:44:31,961 ----------------------------------------------------------------------------------------------------
2024-03-26 09:44:31,961 EPOCH 3 done: loss 0.3077 - lr: 0.000023
2024-03-26 09:44:32,882 DEV : loss 0.26573842763900757 - f1-score (micro avg) 0.8386
2024-03-26 09:44:32,883 saving best model
2024-03-26 09:44:33,332 ----------------------------------------------------------------------------------------------------
2024-03-26 09:44:34,890 epoch 4 - iter 4/48 - loss 0.27499759 - time (sec): 1.56 - samples/sec: 1638.26 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:44:37,093 epoch 4 - iter 8/48 - loss 0.24221231 - time (sec): 3.76 - samples/sec: 1594.15 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:44:38,337 epoch 4 - iter 12/48 - loss 0.23930651 - time (sec): 5.00 - samples/sec: 1670.67 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:44:40,546 epoch 4 - iter 16/48 - loss 0.23924867 - time (sec): 7.21 - samples/sec: 1563.30 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:44:43,067 epoch 4 - iter 20/48 - loss 0.22689797 - time (sec): 9.73 - samples/sec: 1436.47 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:44:45,085 epoch 4 - iter 24/48 - loss 0.23176516 - time (sec): 11.75 - samples/sec: 1432.56 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:44:47,195 epoch 4 - iter 28/48 - loss 0.22426201 - time (sec): 13.86 - samples/sec: 1435.28 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:44:49,751 epoch 4 - iter 32/48 - loss 0.22093128 - time (sec): 16.42 - samples/sec: 1404.63 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:44:52,547 epoch 4 - iter 36/48 - loss 0.21058242 - time (sec): 19.21 - samples/sec: 1392.25 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:44:54,235 epoch 4 - iter 40/48 - loss 0.20472930 - time (sec): 20.90 - samples/sec: 1391.98 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:44:56,221 epoch 4 - iter 44/48 - loss 0.20327120 - time (sec): 22.89 - samples/sec: 1394.79 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:44:57,880 epoch 4 - iter 48/48 - loss 0.20204122 - time (sec): 24.55 - samples/sec: 1404.36 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:44:57,880 ----------------------------------------------------------------------------------------------------
2024-03-26 09:44:57,881 EPOCH 4 done: loss 0.2020 - lr: 0.000020
2024-03-26 09:44:58,784 DEV : loss 0.2160491645336151 - f1-score (micro avg) 0.8654
2024-03-26 09:44:58,785 saving best model
2024-03-26 09:44:59,236 ----------------------------------------------------------------------------------------------------
2024-03-26 09:45:00,059 epoch 5 - iter 4/48 - loss 0.11408889 - time (sec): 0.82 - samples/sec: 2231.23 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:45:01,428 epoch 5 - iter 8/48 - loss 0.15205366 - time (sec): 2.19 - samples/sec: 2030.58 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:45:04,164 epoch 5 - iter 12/48 - loss 0.14478600 - time (sec): 4.93 - samples/sec: 1619.74 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:45:07,113 epoch 5 - iter 16/48 - loss 0.14042386 - time (sec): 7.88 - samples/sec: 1432.90 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:45:08,490 epoch 5 - iter 20/48 - loss 0.14804854 - time (sec): 9.25 - samples/sec: 1483.74 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:45:10,941 epoch 5 - iter 24/48 - loss 0.14514482 - time (sec): 11.70 - samples/sec: 1431.68 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:45:13,001 epoch 5 - iter 28/48 - loss 0.14291018 - time (sec): 13.76 - samples/sec: 1419.68 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:45:15,244 epoch 5 - iter 32/48 - loss 0.14292917 - time (sec): 16.01 - samples/sec: 1447.11 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:45:16,701 epoch 5 - iter 36/48 - loss 0.14908240 - time (sec): 17.46 - samples/sec: 1470.91 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:45:19,231 epoch 5 - iter 40/48 - loss 0.14377708 - time (sec): 19.99 - samples/sec: 1420.95 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:45:21,304 epoch 5 - iter 44/48 - loss 0.14312629 - time (sec): 22.07 - samples/sec: 1433.66 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:45:23,247 epoch 5 - iter 48/48 - loss 0.14304449 - time (sec): 24.01 - samples/sec: 1435.77 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:45:23,247 ----------------------------------------------------------------------------------------------------
2024-03-26 09:45:23,247 EPOCH 5 done: loss 0.1430 - lr: 0.000017
2024-03-26 09:45:24,148 DEV : loss 0.19238987565040588 - f1-score (micro avg) 0.8786
2024-03-26 09:45:24,150 saving best model
2024-03-26 09:45:24,606 ----------------------------------------------------------------------------------------------------
2024-03-26 09:45:26,184 epoch 6 - iter 4/48 - loss 0.11206717 - time (sec): 1.58 - samples/sec: 1579.51 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:45:28,582 epoch 6 - iter 8/48 - loss 0.12248471 - time (sec): 3.97 - samples/sec: 1610.52 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:45:30,514 epoch 6 - iter 12/48 - loss 0.12381849 - time (sec): 5.91 - samples/sec: 1533.89 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:45:32,523 epoch 6 - iter 16/48 - loss 0.11636626 - time (sec): 7.91 - samples/sec: 1532.16 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:45:35,264 epoch 6 - iter 20/48 - loss 0.11487295 - time (sec): 10.66 - samples/sec: 1499.36 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:45:36,772 epoch 6 - iter 24/48 - loss 0.12472605 - time (sec): 12.16 - samples/sec: 1521.80 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:45:38,138 epoch 6 - iter 28/48 - loss 0.12552974 - time (sec): 13.53 - samples/sec: 1527.57 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:45:39,301 epoch 6 - iter 32/48 - loss 0.12340584 - time (sec): 14.69 - samples/sec: 1548.39 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:45:40,766 epoch 6 - iter 36/48 - loss 0.11845859 - time (sec): 16.16 - samples/sec: 1580.23 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:45:42,672 epoch 6 - iter 40/48 - loss 0.11916775 - time (sec): 18.06 - samples/sec: 1568.82 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:45:44,858 epoch 6 - iter 44/48 - loss 0.11527571 - time (sec): 20.25 - samples/sec: 1587.88 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:45:46,508 epoch 6 - iter 48/48 - loss 0.11522214 - time (sec): 21.90 - samples/sec: 1574.13 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:45:46,508 ----------------------------------------------------------------------------------------------------
2024-03-26 09:45:46,508 EPOCH 6 done: loss 0.1152 - lr: 0.000014
2024-03-26 09:45:47,403 DEV : loss 0.17289206385612488 - f1-score (micro avg) 0.8941
2024-03-26 09:45:47,404 saving best model
2024-03-26 09:45:47,857 ----------------------------------------------------------------------------------------------------
2024-03-26 09:45:49,548 epoch 7 - iter 4/48 - loss 0.07200689 - time (sec): 1.69 - samples/sec: 1441.68 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:45:51,129 epoch 7 - iter 8/48 - loss 0.09330083 - time (sec): 3.27 - samples/sec: 1514.70 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:45:53,214 epoch 7 - iter 12/48 - loss 0.09038192 - time (sec): 5.36 - samples/sec: 1469.64 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:45:55,204 epoch 7 - iter 16/48 - loss 0.09096213 - time (sec): 7.35 - samples/sec: 1516.73 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:45:55,835 epoch 7 - iter 20/48 - loss 0.08593354 - time (sec): 7.98 - samples/sec: 1624.73 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:45:57,400 epoch 7 - iter 24/48 - loss 0.08538935 - time (sec): 9.54 - samples/sec: 1605.80 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:46:00,234 epoch 7 - iter 28/48 - loss 0.08421075 - time (sec): 12.38 - samples/sec: 1504.87 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:46:02,989 epoch 7 - iter 32/48 - loss 0.08232354 - time (sec): 15.13 - samples/sec: 1431.85 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:46:05,703 epoch 7 - iter 36/48 - loss 0.08605663 - time (sec): 17.84 - samples/sec: 1444.74 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:46:07,663 epoch 7 - iter 40/48 - loss 0.08909139 - time (sec): 19.80 - samples/sec: 1451.56 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:46:10,190 epoch 7 - iter 44/48 - loss 0.09175837 - time (sec): 22.33 - samples/sec: 1426.44 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:46:11,923 epoch 7 - iter 48/48 - loss 0.09047578 - time (sec): 24.06 - samples/sec: 1432.51 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:46:11,923 ----------------------------------------------------------------------------------------------------
2024-03-26 09:46:11,923 EPOCH 7 done: loss 0.0905 - lr: 0.000010
2024-03-26 09:46:12,819 DEV : loss 0.17756354808807373 - f1-score (micro avg) 0.8921
2024-03-26 09:46:12,820 ----------------------------------------------------------------------------------------------------
2024-03-26 09:46:15,432 epoch 8 - iter 4/48 - loss 0.09145265 - time (sec): 2.61 - samples/sec: 1264.58 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:46:17,478 epoch 8 - iter 8/48 - loss 0.06932129 - time (sec): 4.66 - samples/sec: 1259.86 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:46:20,637 epoch 8 - iter 12/48 - loss 0.06960067 - time (sec): 7.82 - samples/sec: 1239.81 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:46:22,554 epoch 8 - iter 16/48 - loss 0.08062008 - time (sec): 9.73 - samples/sec: 1268.10 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:46:23,990 epoch 8 - iter 20/48 - loss 0.08058957 - time (sec): 11.17 - samples/sec: 1314.68 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:46:26,394 epoch 8 - iter 24/48 - loss 0.07978568 - time (sec): 13.57 - samples/sec: 1314.65 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:46:28,134 epoch 8 - iter 28/48 - loss 0.08353391 - time (sec): 15.31 - samples/sec: 1350.27 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:46:29,789 epoch 8 - iter 32/48 - loss 0.08022088 - time (sec): 16.97 - samples/sec: 1371.01 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:46:31,061 epoch 8 - iter 36/48 - loss 0.07954960 - time (sec): 18.24 - samples/sec: 1402.54 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:46:33,360 epoch 8 - iter 40/48 - loss 0.07805199 - time (sec): 20.54 - samples/sec: 1411.53 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:46:36,162 epoch 8 - iter 44/48 - loss 0.07479444 - time (sec): 23.34 - samples/sec: 1380.24 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:46:38,065 epoch 8 - iter 48/48 - loss 0.07452892 - time (sec): 25.24 - samples/sec: 1365.52 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:46:38,065 ----------------------------------------------------------------------------------------------------
2024-03-26 09:46:38,065 EPOCH 8 done: loss 0.0745 - lr: 0.000007
2024-03-26 09:46:38,956 DEV : loss 0.1639167219400406 - f1-score (micro avg) 0.9223
2024-03-26 09:46:38,957 saving best model
2024-03-26 09:46:39,402 ----------------------------------------------------------------------------------------------------
2024-03-26 09:46:41,189 epoch 9 - iter 4/48 - loss 0.08119094 - time (sec): 1.78 - samples/sec: 1593.39 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:46:43,560 epoch 9 - iter 8/48 - loss 0.06826402 - time (sec): 4.16 - samples/sec: 1475.47 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:46:45,875 epoch 9 - iter 12/48 - loss 0.08047549 - time (sec): 6.47 - samples/sec: 1426.58 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:46:47,883 epoch 9 - iter 16/48 - loss 0.07774196 - time (sec): 8.48 - samples/sec: 1426.44 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:46:49,315 epoch 9 - iter 20/48 - loss 0.06981163 - time (sec): 9.91 - samples/sec: 1487.02 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:46:50,501 epoch 9 - iter 24/48 - loss 0.06576084 - time (sec): 11.10 - samples/sec: 1535.18 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:46:52,176 epoch 9 - iter 28/48 - loss 0.06423120 - time (sec): 12.77 - samples/sec: 1548.47 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:46:54,403 epoch 9 - iter 32/48 - loss 0.06847394 - time (sec): 15.00 - samples/sec: 1533.11 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:46:57,049 epoch 9 - iter 36/48 - loss 0.06724059 - time (sec): 17.64 - samples/sec: 1480.42 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:46:59,934 epoch 9 - iter 40/48 - loss 0.06646050 - time (sec): 20.53 - samples/sec: 1435.67 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:47:01,715 epoch 9 - iter 44/48 - loss 0.06605033 - time (sec): 22.31 - samples/sec: 1451.29 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:47:02,735 epoch 9 - iter 48/48 - loss 0.06612071 - time (sec): 23.33 - samples/sec: 1477.52 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:47:02,735 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:02,735 EPOCH 9 done: loss 0.0661 - lr: 0.000004
2024-03-26 09:47:03,634 DEV : loss 0.15946133434772491 - f1-score (micro avg) 0.9256
2024-03-26 09:47:03,635 saving best model
2024-03-26 09:47:04,087 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:06,375 epoch 10 - iter 4/48 - loss 0.03203042 - time (sec): 2.29 - samples/sec: 1444.51 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:47:08,406 epoch 10 - iter 8/48 - loss 0.04820710 - time (sec): 4.32 - samples/sec: 1430.94 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:47:10,303 epoch 10 - iter 12/48 - loss 0.04809610 - time (sec): 6.21 - samples/sec: 1420.07 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:47:11,525 epoch 10 - iter 16/48 - loss 0.05153512 - time (sec): 7.44 - samples/sec: 1481.96 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:47:13,416 epoch 10 - iter 20/48 - loss 0.05993410 - time (sec): 9.33 - samples/sec: 1469.67 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:47:15,606 epoch 10 - iter 24/48 - loss 0.06493684 - time (sec): 11.52 - samples/sec: 1441.99 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:47:16,480 epoch 10 - iter 28/48 - loss 0.06441247 - time (sec): 12.39 - samples/sec: 1516.33 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:47:17,728 epoch 10 - iter 32/48 - loss 0.06219799 - time (sec): 13.64 - samples/sec: 1557.26 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:47:20,461 epoch 10 - iter 36/48 - loss 0.05975149 - time (sec): 16.37 - samples/sec: 1508.27 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:47:22,867 epoch 10 - iter 40/48 - loss 0.06004247 - time (sec): 18.78 - samples/sec: 1531.22 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:47:25,399 epoch 10 - iter 44/48 - loss 0.05988235 - time (sec): 21.31 - samples/sec: 1505.10 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:47:27,307 epoch 10 - iter 48/48 - loss 0.05921491 - time (sec): 23.22 - samples/sec: 1484.68 - lr: 0.000000 - momentum: 0.000000
2024-03-26 09:47:27,308 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:27,308 EPOCH 10 done: loss 0.0592 - lr: 0.000000
2024-03-26 09:47:28,208 DEV : loss 0.1646251529455185 - f1-score (micro avg) 0.9228
2024-03-26 09:47:28,489 ----------------------------------------------------------------------------------------------------
2024-03-26 09:47:28,490 Loading model from best epoch ...
2024-03-26 09:47:29,430 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 09:47:30,175
Results:
- F-score (micro) 0.8969
- F-score (macro) 0.6818
- Accuracy 0.8175
By class:
precision recall f1-score support
Unternehmen 0.9105 0.8797 0.8948 266
Auslagerung 0.8371 0.8876 0.8616 249
Ort 0.9565 0.9851 0.9706 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.8894 0.9045 0.8969 649
macro avg 0.6760 0.6881 0.6818 649
weighted avg 0.8919 0.9045 0.8977 649
2024-03-26 09:47:30,176 ----------------------------------------------------------------------------------------------------
|