starmpcc commited on
Commit
2f15bd8
·
1 Parent(s): 6b64bdd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +142 -1
README.md CHANGED
@@ -1,3 +1,144 @@
1
  ---
2
- license: cc-by-nc-sa-4.0
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-nc-4.0
3
+ datasets:
4
+ - starmpcc/Asclepius-Synthetic-Clinical-Notes
5
+ language:
6
+ - en
7
+ pipeline_tag: text2text-generation
8
+ tags:
9
+ - medical
10
  ---
11
+ # Model Card for Model ID
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+ This is an official model checkpoint for Asclepius-Llama2-7B [(arxiv)](https://arxiv.org/abs/2309.00237).
16
+ This model is an enhanced version of Asclepius-7B, by replacing the base model with Llama-2 and increasing the max sequence length to 4096.
17
+
18
+ ## Model Details
19
+
20
+ ### Model Description
21
+
22
+ <!-- Provide a longer summary of what this model is. -->
23
+
24
+
25
+
26
+ - **Model type:** Clinical LLM (Large Language Model)
27
+ - **Language(s) (NLP):** English
28
+ - **License:** CC-BY-NC-SA 4.0
29
+ - **Finetuned from model [optional]:** Llama2-7B
30
+
31
+ ### Model Sources [optional]
32
+
33
+ <!-- Provide the basic links for the model. -->
34
+
35
+ - **Repository:** https://github.com/starmpcc/Asclepius
36
+ - **Paper:** https://arxiv.org/abs/2309.00237
37
+ - **Data:** https://huggingface.co/datasets/starmpcc/Asclepius-Synthetic-Clinical-Notes
38
+
39
+ ## Uses
40
+
41
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
42
+ This model can perform below 8 clinical NLP tasks, with clincal notes.
43
+ - Named Entity Recognition
44
+ - Abbreviation Expansion
45
+ - Relation Extraction
46
+ - Temporal Information Extraction
47
+ - Coreference Resolution
48
+ - Paraphrasing
49
+ - Summarization
50
+ - Question Answering
51
+
52
+ ### Direct Use
53
+
54
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ### Downstream Use [optional]
59
+
60
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Out-of-Scope Use
65
+
66
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
67
+
68
+ ONLY USE THIS MODEL FOR RESEARCH PURPOSE!!
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ ```python
73
+ prompt = """You are an intelligent clinical languge model.
74
+ Below is a snippet of patient's discharge summary and a following instruction from healthcare professional.
75
+ Write a response that appropriately completes the instruction.
76
+ The response should provide the accurate answer to the instruction, while being concise.
77
+
78
+ [Discharge Summary Begin]
79
+ {note}
80
+ [Discharge Summary End]
81
+
82
+ [Instruction Begin]
83
+ {question}
84
+ [Instruction End]
85
+ """
86
+
87
+ from transformers import AutoTokenizer, AutoModel
88
+ tokenizer = AutoTokenizer.from_pretrained("starmpcc/Asclepius-Llama2-7B")
89
+ model = AutoModel.from_pretrained("starmpcc/Asclepius-Llama2-7B")
90
+
91
+ note = "This is a sample note"
92
+ question = "What is the diagnosis?"
93
+
94
+ model_input = prompt.format(note=note, question=question)
95
+ input_ids = tokenizer(model_input, return_tensors="pt").input_ids
96
+ output = model.generate(input_ids)
97
+ print(tokenizer.decode(output[0]))
98
+ ```
99
+
100
+ ## Training Details
101
+
102
+ ### Training Data
103
+
104
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
105
+
106
+ https://huggingface.co/datasets/starmpcc/Asclepius-Synthetic-Clinical-Notes
107
+
108
+ ### Training Procedure
109
+
110
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
111
+ - Initial training was conducted using causal language modeling on synthetic clinical notes.
112
+ - It was then fine-tuned with clinical instruction-response pairs.
113
+ - For a comprehensive overview of our methods, our upcoming paper will serve as a resource.
114
+
115
+ #### Training Hyperparameters
116
+
117
+ - We followed config used in [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
118
+ -
119
+ #### Speeds, Sizes, Times
120
+
121
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
122
+ - Pre-Training (1 epoch): 1h 7m with 8x A100 80G
123
+ - Instruction Fine-Tuning (3 epoch): 6h 47m with 8x A100 80G
124
+
125
+
126
+
127
+ ## Citation
128
+
129
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
130
+
131
+ **BibTeX:**
132
+
133
+ ```
134
+ @misc{kweon2023publicly,
135
+ title={Publicly Shareable Clinical Large Language Model Built on Synthetic Clinical Notes},
136
+ author={Sunjun Kweon and Junu Kim and Jiyoun Kim and Sujeong Im and Eunbyeol Cho and Seongsu Bae and Jungwoo Oh and Gyubok Lee and Jong Hak Moon and Seng Chan You and Seungjin Baek and Chang Hoon Han and Yoon Bin Jung and Yohan Jo and Edward Choi},
137
+ year={2023},
138
+ eprint={2309.00237},
139
+ archivePrefix={arXiv},
140
+ primaryClass={cs.CL}
141
+ }
142
+ ```
143
+
144
+