File size: 10,729 Bytes
bc7e10c e56b02a bc7e10c 5558dfa bc7e10c 9005453 bc7e10c 5558dfa b5acbe8 5558dfa b5acbe8 5558dfa bc7e10c 5558dfa bc7e10c 03b5bc9 bc7e10c 5558dfa b5acbe8 03b5bc9 5558dfa bc7e10c 03b5bc9 bc7e10c 5558dfa bc7e10c 5558dfa bc7e10c e3d1186 bc7e10c 7c8b487 bc7e10c f224fe9 72bc7e4 7c8b487 bc7e10c 03b5bc9 18fd9a0 f224fe9 bc7e10c 9005453 f224fe9 03b5bc9 bc7e10c f224fe9 bc7e10c 3da1353 3131f94 9c052b0 0f58247 f74bac7 0f58247 9c052b0 3131f94 3da1353 f26880b f74bac7 3da1353 3131f94 f74bac7 bc7e10c 9005453 bc7e10c 46a34ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
---
datasets:
- HuggingFaceH4/ultrachat_200k
- HuggingFaceH4/ultrafeedback_binarized
- meta-math/MetaMathQA
- WizardLM/WizardLM_evol_instruct_V2_196k
- Intel/orca_dpo_pairs
language:
- en
tags:
- causal-lm
extra_gated_fields:
Name: text
Email: text
Country: text
Organization or Affiliation: text
I ALLOW Stability AI to email me about new model releases: checkbox
---
# `StableLM Zephyr 3B`
## Model Description
`StableLM Zephyr 3B` is a 3 billion parameter instruction tuned inspired by [HugginFaceH4's Zephyr 7B](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) training pipeline this model was trained on a mix of publicly available datasets, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290), evaluation for this model based on
[MT Bench](https://tatsu-lab.github.io/alpaca_eval/) and [Alpaca Benchmark](https://tatsu-lab.github.io/alpaca_eval/)
## Usage
`StableLM Zephyr 3B` uses the following instruction format:
```
<|user|>
List 3 synonyms for the word "tiny"<|endoftext|>
<|assistant|>
1. Dwarf
2. Little
3. Petite<|endoftext|>
```
This format is also available through the tokenizer's `apply_chat_template` method:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-zephyr-3b')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-zephyr-3b',
trust_remote_code=True,
device_map="auto"
)
prompt = [{'role': 'user', 'content': 'List 3 synonyms for the word "tiny"'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.8,
do_sample=True
)
print(tokenizer.decode(tokens[0], skip_special_tokens=False))
```
## Model Details
* **Developed by**: [Stability AI](https://stability.ai/)
* **Model type**: `StableLM Zephyr 3B` model is an auto-regressive language model based on the transformer decoder architecture.
* **Language(s)**: English
* **Library**: [Alignment Handbook](https://github.com/huggingface/alignment-handbook.git)
* **Finetuned from model**: [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t)
* **License**: TBD
* **Contact**: For questions and comments about the model, please email `[email protected]`
### Training Dataset
The dataset is comprised of a mixture of open datasets large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets):
1. SFT Datasets
- HuggingFaceH4/ultrachat_200k
- meta-math/MetaMathQA
- WizardLM/WizardLM_evol_instruct_V2_196k
- Open-Orca/SlimOrca
2. Preference Datasets:
- HuggingFaceH4/ultrafeedback_binarized
- Intel/orca_dpo_pairs
## Performance
### MT-Bench and Alpaca Bench
<img src="https://cdn-uploads.huggingface.co/production/uploads/6310474ca119d49bc1eb0d80/8WIZS6dAlu5kSH-382pMl.png" alt="mt_bench_plot" width="600"/>
| Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) |
|-------------|-----|----|---------------|--------------|
| **StableLM Zephyr 3B** 🪁 | 3B | DPO | 6.64 | 76.00 |
| StableLM Zephyr (SFT only) | 3B | SFT | 6.04 | 71.15 |
| Capybara v1.9 | 3B | dSFT | 5.94 | - |
| MPT-Chat | 7B |dSFT |5.42| -|
| Xwin-LM v0.1 | 7B| dPPO| 6.19| 87.83|
| Mistral-Instruct v0.1 | 7B| - | 6.84 |-|
| Zephyr-7b-α |7B| dDPO| 6.88| -|
| Zephyr-7b-β| 7B | dDPO | 7.34 | 90.60 |
| Falcon-Instruct | 40B |dSFT |5.17 |45.71|
| Guanaco | 65B | SFT |6.41| 71.80|
| Llama2-Chat | 70B |RLHF |6.86| 92.66|
| Vicuna v1.3 | 33B |dSFT |7.12 |88.99|
| WizardLM v1.0 | 70B |dSFT |7.71 |-|
| Xwin-LM v0.1 | 70B |dPPO |- |95.57|
| GPT-3.5-turbo | - |RLHF |7.94 |89.37|
| Claude 2 | - |RLHF |8.06| 91.36|
| GPT-4 | -| RLHF |8.99| 95.28|
## Other benchmark:
1. **HuggingFace OpenLLM Leaderboard**
| Metric | Value |
|-----------------------|---------------------------|
| ARC (25-shot) | 47.0 |
| HellaSwag (10-shot) | 74.2 |
| MMLU (5-shot) | 46.3 |
| TruthfulQA (0-shot) | 46.5 |
| Winogrande (5-shot) | 65.5 |
| GSM8K (5-shot) | 42.3 |
2. **BigBench**:
- Average: 35.26
- Details:
| Task | Version | Metric | Value | Stderr |
|-----------------------------------------------------|---------|-------------------------|-------|--------|
| bigbench_causal_judgement | 0 | multiple_choice_grade | 0.5316| 0.0363 |
| bigbench_date_understanding | 0 | multiple_choice_grade | 0.4363| 0.0259 |
| bigbench_disambiguation_qa | 0 | multiple_choice_grade | 0.3217| 0.0291 |
| bigbench_dyck_languages | 0 | multiple_choice_grade | 0.1450| 0.0111 |
| bigbench_formal_fallacies_syllogisms_negation | 0 | multiple_choice_grade | 0.4982| 0.0042 |
| bigbench_geometric_shapes | 0 | multiple_choice_grade | 0.1086| 0.0164 |
| bigbench_hyperbaton | 0 | exact_str_match | 0.0000| 0.0000 |
| bigbench_logical_deduction_five_objects | 0 | multiple_choice_grade | 0.5232| 0.0022 |
| bigbench_logical_deduction_seven_objects | 0 | multiple_choice_grade | 0.2480| 0.0193 |
| bigbench_logical_deduction_three_objects | 0 | multiple_choice_grade | 0.1814| 0.0146 |
| bigbench_movie_recommendation | 0 | multiple_choice_grade | 0.4067| 0.0284 |
| bigbench_navigate | 0 | multiple_choice_grade | 0.2580| 0.0196 |
| bigbench_reasoning_about_colored_objects | 0 | multiple_choice_grade | 0.5990| 0.0155 |
| bigbench_ruin_names | 0 | multiple_choice_grade | 0.4370| 0.0111 |
| bigbench_salient_translation_error_detection | 0 | multiple_choice_grade | 0.3951| 0.0231 |
| bigbench_snarks | 0 | multiple_choice_grade | 0.2265| 0.0133 |
| bigbench_sports_understanding | 0 | multiple_choice_grade | 0.6464| 0.0356 |
| bigbench_temporal_sequences | 0 | multiple_choice_grade | 0.5091| 0.0159 |
| bigbench_tracking_shuffled_objects_five_objects | 0 | multiple_choice_grade | 0.2680| 0.0140 |
| bigbench_tracking_shuffled_objects_seven_objects | 0 | multiple_choice_grade | 0.1856| 0.0110 |
| bigbench_tracking_shuffled_objects_three_objects | 0 | multiple_choice_grade | 0.1269| 0.0080 |
3. **AGI Benchmark**:
- Average: 33.23
- Details:
| Task |Version| Metric |Value | |Stderr|
|------------------------------|------:|--------|-----:|---|-----:|
|agieval_aqua_rat | 0|acc |0.2126|± |0.0257|
| | |acc_norm|0.1890|± |0.0246|
|agieval_gaokao_biology | 0|acc |0.2571|± |0.0302|
| | |acc_norm|0.3143|± |0.0321|
|agieval_gaokao_chemistry | 0|acc |0.2464|± |0.0300|
| | |acc_norm|0.2899|± |0.0316|
|agieval_gaokao_chinese | 0|acc |0.2927|± |0.0291|
| | |acc_norm|0.3049|± |0.0294|
|agieval_gaokao_english | 0|acc |0.6176|± |0.0278|
| | |acc_norm|0.6438|± |0.0274|
|agieval_gaokao_geography | 0|acc |0.3015|± |0.0326|
| | |acc_norm|0.3065|± |0.0328|
|agieval_gaokao_history | 0|acc |0.3106|± |0.0303|
| | |acc_norm|0.3319|± |0.0308|
|agieval_gaokao_mathqa | 0|acc |0.2650|± |0.0236|
| | |acc_norm|0.2707|± |0.0237|
|agieval_gaokao_physics | 0|acc |0.3450|± |0.0337|
| | |acc_norm|0.3550|± |0.0339|
|agieval_logiqa_en | 0|acc |0.2980|± |0.0179|
| | |acc_norm|0.3195|± |0.0183|
|agieval_logiqa_zh | 0|acc |0.2842|± |0.0177|
| | |acc_norm|0.3318|± |0.0185|
|agieval_lsat_ar | 0|acc |0.2000|± |0.0264|
| | |acc_norm|0.2043|± |0.0266|
|agieval_lsat_lr | 0|acc |0.3176|± |0.0206|
| | |acc_norm|0.3275|± |0.0208|
|agieval_lsat_rc | 0|acc |0.4312|± |0.0303|
| | |acc_norm|0.4201|± |0.0301|
|agieval_sat_en | 0|acc |0.6117|± |0.0340|
| | |acc_norm|0.6117|± |0.0340|
|agieval_sat_en_without_passage| 0|acc |0.3398|± |0.0331|
| | |acc_norm|0.3495|± |0.0333|
|agieval_sat_math | 0|acc |0.3182|± |0.0315|
| | |acc_norm|0.2909|± |0.0307|
### Training Infrastructure
* **Hardware**: `StableLM Zephyr 3B` was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes.
* **Code Base**: We use our internal script for SFT steps and used [HuggingFace Alignment Handbook script](https://github.com/huggingface/alignment-handbook) for DPO training.
## Use and Limitations
### Intended Use
The model is intended to be used as a foundational base model for application-specific fine-tuning. Developers must evaluate and fine-tune the model for safe performance in downstream applications.
### Limitations and Bias
This model is not trained against adversarial inputs. We strongly recommend pairing this model with an input and output classifier to prevent harmful responses.
Through internal testing, we discovered that while the model will not output harmful information if not prompted to do so, it is willing to output potentially harmful outputs or misinformation when the user requests it. Using this model will require guardrails around your inputs and outputs to ensure that any outputs returned are not misinformation or harmful. Additionally, as each use case is unique, we recommend running your own suite of tests to ensure proper performance of this model. Finally, do not use the models if they are unsuitable for your application, or for any applications that may cause deliberate or unintentional harm to others. |