caddiehealth
commited on
feat(modeling_stablelm_epoch.py): add support for AutoModelForSequenceClassification
Browse filesAdds support for using `AutoModelForSequenceClassification`. Currently you would receive an error like this: ` Unrecognized configuration class for this kind of AutoModel: AutoModelForSequenceClassification.`
- modeling_stablelm_epoch.py +109 -2
modeling_stablelm_epoch.py
CHANGED
@@ -17,7 +17,7 @@
|
|
17 |
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
18 |
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py
|
19 |
""" PyTorch StableLM Epoch model. """
|
20 |
-
from typing import Optional, Tuple, Union
|
21 |
import math
|
22 |
import warnings
|
23 |
|
@@ -25,12 +25,13 @@ import torch
|
|
25 |
import torch.nn.functional as F
|
26 |
import torch.utils.checkpoint
|
27 |
from torch import nn
|
28 |
-
from torch.nn import CrossEntropyLoss
|
29 |
|
30 |
from transformers.cache_utils import Cache
|
31 |
from transformers.modeling_outputs import (
|
32 |
BaseModelOutputWithPast,
|
33 |
CausalLMOutputWithPast,
|
|
|
34 |
)
|
35 |
from transformers.modeling_utils import PreTrainedModel
|
36 |
from transformers.utils import logging, is_flash_attn_greater_or_equal_2_10
|
@@ -913,5 +914,111 @@ class StableLMEpochForCausalLM(StableLMEpochPreTrainedModel):
|
|
913 |
return reordered_past
|
914 |
|
915 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
916 |
StableLMEpochConfig.register_for_auto_class()
|
917 |
StableLMEpochForCausalLM.register_for_auto_class("AutoModelForCausalLM")
|
|
|
|
17 |
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
18 |
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py
|
19 |
""" PyTorch StableLM Epoch model. """
|
20 |
+
from typing import Optional, Tuple, Union, List
|
21 |
import math
|
22 |
import warnings
|
23 |
|
|
|
25 |
import torch.nn.functional as F
|
26 |
import torch.utils.checkpoint
|
27 |
from torch import nn
|
28 |
+
from torch.nn import CrossEntropyLoss, BCEWithLogitsLoss, MSELoss
|
29 |
|
30 |
from transformers.cache_utils import Cache
|
31 |
from transformers.modeling_outputs import (
|
32 |
BaseModelOutputWithPast,
|
33 |
CausalLMOutputWithPast,
|
34 |
+
SequenceClassifierOutputWithPast,
|
35 |
)
|
36 |
from transformers.modeling_utils import PreTrainedModel
|
37 |
from transformers.utils import logging, is_flash_attn_greater_or_equal_2_10
|
|
|
914 |
return reordered_past
|
915 |
|
916 |
|
917 |
+
class StableLMEpochForSequenceClassification(StableLMEpochPreTrainedModel):
|
918 |
+
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
919 |
+
|
920 |
+
def __init__(self, config):
|
921 |
+
super().__init__(config)
|
922 |
+
self.num_labels = config.num_labels
|
923 |
+
self.model = StableLMEpochModel(config)
|
924 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
925 |
+
|
926 |
+
# Initialize weights and apply final processing
|
927 |
+
self.post_init()
|
928 |
+
|
929 |
+
def get_input_embeddings(self):
|
930 |
+
return self.model.embed_tokens
|
931 |
+
|
932 |
+
def set_input_embeddings(self, value):
|
933 |
+
self.model.embed_tokens = value
|
934 |
+
|
935 |
+
def forward(
|
936 |
+
self,
|
937 |
+
input_ids: torch.LongTensor = None,
|
938 |
+
attention_mask: Optional[torch.Tensor] = None,
|
939 |
+
position_ids: Optional[torch.LongTensor] = None,
|
940 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
941 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
942 |
+
labels: Optional[torch.LongTensor] = None,
|
943 |
+
use_cache: Optional[bool] = None,
|
944 |
+
output_attentions: Optional[bool] = None,
|
945 |
+
output_hidden_states: Optional[bool] = None,
|
946 |
+
return_dict: Optional[bool] = None,
|
947 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
948 |
+
r"""
|
949 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
950 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
951 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
952 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
953 |
+
"""
|
954 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
955 |
+
|
956 |
+
transformer_outputs = self.model(
|
957 |
+
input_ids,
|
958 |
+
attention_mask=attention_mask,
|
959 |
+
position_ids=position_ids,
|
960 |
+
past_key_values=past_key_values,
|
961 |
+
inputs_embeds=inputs_embeds,
|
962 |
+
use_cache=use_cache,
|
963 |
+
output_attentions=output_attentions,
|
964 |
+
output_hidden_states=output_hidden_states,
|
965 |
+
return_dict=return_dict,
|
966 |
+
)
|
967 |
+
hidden_states = transformer_outputs[0]
|
968 |
+
logits = self.score(hidden_states)
|
969 |
+
|
970 |
+
if input_ids is not None:
|
971 |
+
batch_size = input_ids.shape[0]
|
972 |
+
else:
|
973 |
+
batch_size = inputs_embeds.shape[0]
|
974 |
+
|
975 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
976 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
977 |
+
if self.config.pad_token_id is None:
|
978 |
+
sequence_lengths = -1
|
979 |
+
else:
|
980 |
+
if input_ids is not None:
|
981 |
+
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
982 |
+
else:
|
983 |
+
sequence_lengths = -1
|
984 |
+
|
985 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
986 |
+
|
987 |
+
loss = None
|
988 |
+
if labels is not None:
|
989 |
+
labels = labels.to(logits.device)
|
990 |
+
if self.config.problem_type is None:
|
991 |
+
if self.num_labels == 1:
|
992 |
+
self.config.problem_type = "regression"
|
993 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
994 |
+
self.config.problem_type = "single_label_classification"
|
995 |
+
else:
|
996 |
+
self.config.problem_type = "multi_label_classification"
|
997 |
+
|
998 |
+
if self.config.problem_type == "regression":
|
999 |
+
loss_fct = MSELoss()
|
1000 |
+
if self.num_labels == 1:
|
1001 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1002 |
+
else:
|
1003 |
+
loss = loss_fct(pooled_logits, labels)
|
1004 |
+
elif self.config.problem_type == "single_label_classification":
|
1005 |
+
loss_fct = CrossEntropyLoss()
|
1006 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1007 |
+
elif self.config.problem_type == "multi_label_classification":
|
1008 |
+
loss_fct = BCEWithLogitsLoss()
|
1009 |
+
loss = loss_fct(pooled_logits, labels)
|
1010 |
+
if not return_dict:
|
1011 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1012 |
+
return ((loss,) + output) if loss is not None else output
|
1013 |
+
|
1014 |
+
return SequenceClassifierOutputWithPast(
|
1015 |
+
loss=loss,
|
1016 |
+
logits=pooled_logits,
|
1017 |
+
past_key_values=transformer_outputs.past_key_values,
|
1018 |
+
hidden_states=transformer_outputs.hidden_states,
|
1019 |
+
attentions=transformer_outputs.attentions,
|
1020 |
+
)
|
1021 |
+
|
1022 |
StableLMEpochConfig.register_for_auto_class()
|
1023 |
StableLMEpochForCausalLM.register_for_auto_class("AutoModelForCausalLM")
|
1024 |
+
StableLMEpochForSequenceClassification.register_for_auto_class("AutoModelForSequenceClassification")
|