feat: add dropout support
Browse files
configuration_stablelm_epoch.py
CHANGED
@@ -65,6 +65,8 @@ class StableLMEpochConfig(PretrainedConfig):
|
|
65 |
Whether or not the model should use bias for qkv layers.
|
66 |
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
67 |
Whether to tie weight embeddings
|
|
|
|
|
68 |
"""
|
69 |
model_type = "stablelm_epoch"
|
70 |
keys_to_ignore_at_inference = ["past_key_values"]
|
@@ -88,6 +90,7 @@ class StableLMEpochConfig(PretrainedConfig):
|
|
88 |
bos_token_id=0,
|
89 |
eos_token_id=2,
|
90 |
tie_word_embeddings=False,
|
|
|
91 |
**kwargs,
|
92 |
):
|
93 |
self.vocab_size = vocab_size
|
@@ -105,6 +108,7 @@ class StableLMEpochConfig(PretrainedConfig):
|
|
105 |
self.use_cache = use_cache
|
106 |
self.use_qkv_bias = use_qkv_bias
|
107 |
self.tie_word_embeddings = tie_word_embeddings
|
|
|
108 |
super().__init__(
|
109 |
bos_token_id=bos_token_id,
|
110 |
eos_token_id=eos_token_id,
|
|
|
65 |
Whether or not the model should use bias for qkv layers.
|
66 |
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
67 |
Whether to tie weight embeddings
|
68 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
69 |
+
The dropout ratio for the attention probabilities.
|
70 |
"""
|
71 |
model_type = "stablelm_epoch"
|
72 |
keys_to_ignore_at_inference = ["past_key_values"]
|
|
|
90 |
bos_token_id=0,
|
91 |
eos_token_id=2,
|
92 |
tie_word_embeddings=False,
|
93 |
+
attention_dropout: float = 0.0,
|
94 |
**kwargs,
|
95 |
):
|
96 |
self.vocab_size = vocab_size
|
|
|
108 |
self.use_cache = use_cache
|
109 |
self.use_qkv_bias = use_qkv_bias
|
110 |
self.tie_word_embeddings = tie_word_embeddings
|
111 |
+
self.attention_dropout = attention_dropout
|
112 |
super().__init__(
|
113 |
bos_token_id=bos_token_id,
|
114 |
eos_token_id=eos_token_id,
|
modeling_stablelm_epoch.py
CHANGED
@@ -191,6 +191,7 @@ class Attention(nn.Module):
|
|
191 |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
192 |
self.max_position_embeddings = config.max_position_embeddings
|
193 |
self.is_causal = True
|
|
|
194 |
|
195 |
if (self.head_dim * self.num_heads) != self.hidden_size:
|
196 |
raise ValueError(
|
@@ -275,6 +276,7 @@ class Attention(nn.Module):
|
|
275 |
|
276 |
# Upcast attention to fp32
|
277 |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
|
|
278 |
attn_output = torch.matmul(attn_weights, value_states)
|
279 |
|
280 |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
|
|
191 |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
192 |
self.max_position_embeddings = config.max_position_embeddings
|
193 |
self.is_causal = True
|
194 |
+
self.attention_dropout = config.attention_dropout
|
195 |
|
196 |
if (self.head_dim * self.num_heads) != self.hidden_size:
|
197 |
raise ValueError(
|
|
|
276 |
|
277 |
# Upcast attention to fp32
|
278 |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
279 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
280 |
attn_output = torch.matmul(attn_weights, value_states)
|
281 |
|
282 |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|