pvduy commited on
Commit
10522cd
1 Parent(s): 8613316

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -38
README.md CHANGED
@@ -45,7 +45,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
45
 
46
  tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-zephyr-3b')
47
  model = AutoModelForCausalLM.from_pretrained(
48
- 'stabilityai/stablelm-zephyr-3b',
49
  trust_remote_code=True,
50
  device_map="auto"
51
  )
@@ -87,52 +87,49 @@ The dataset is comprised of a mixture of open datasets large-scale datasets avai
87
  - meta-math/MetaMathQA
88
  - WizardLM/WizardLM_evol_instruct_V2_196k
89
  - Open-Orca/SlimOrca
 
 
 
90
  2. Preference Datasets:
91
  - HuggingFaceH4/ultrafeedback_binarized
92
  - Intel/orca_dpo_pairs
93
 
94
  ## Performance
95
 
96
- ### MT-Bench and Alpaca Bench
97
-
98
-
99
- <img src="https://cdn-uploads.huggingface.co/production/uploads/6310474ca119d49bc1eb0d80/8WIZS6dAlu5kSH-382pMl.png" alt="mt_bench_plot" width="600"/>
100
-
101
- | Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) |
102
- |-------------|-----|----|---------------|--------------|
103
- | **StableLM Zephyr 3B** 🪁 | 3B | DPO | 6.64 | 76.00 |
104
- | StableLM Zephyr (SFT only) | 3B | SFT | 6.04 | 71.15 |
105
- | Capybara v1.9 | 3B | dSFT | 5.94 | - |
106
- | MPT-Chat | 7B |dSFT |5.42| -|
107
- | Xwin-LM v0.1 | 7B| dPPO| 6.19| 87.83|
108
- | Mistral-Instruct v0.1 | 7B| - | 6.84 |-|
109
- | Zephyr-7b-α |7B| dDPO| 6.88| -|
110
- | Zephyr-7b-β| 7B | dDPO | 7.34 | 90.60 |
111
- | Falcon-Instruct | 40B |dSFT |5.17 |45.71|
112
- | Guanaco | 65B | SFT |6.41| 71.80|
113
- | Llama2-Chat | 70B |RLHF |6.86| 92.66|
114
- | Vicuna v1.3 | 33B |dSFT |7.12 |88.99|
115
- | WizardLM v1.0 | 70B |dSFT |7.71 |-|
116
- | Xwin-LM v0.1 | 70B |dPPO |- |95.57|
117
- | GPT-3.5-turbo | - |RLHF |7.94 |89.37|
118
- | Claude 2 | - |RLHF |8.06| 91.36|
119
- | GPT-4 | -| RLHF |8.99| 95.28|
120
-
121
- ## Other benchmarks:
122
- | Task | Value |
123
- |-----------------------|---------------------------|
124
- | ARC (25-shot) | 47.0 |
125
- | HellaSwag (10-shot) | 74.2 |
126
- | MMLU (5-shot) | 46.3 |
127
- | TruthfulQA (0-shot) | 46.5 |
128
- | Winogrande (5-shot) | 65.5 |
129
- | GSM8K (5-shot) | 42.3 |
130
- | BigBench (Avg) | 35.26 |
131
- | AGI Benchmark (Avg) | 33.23 |
132
 
133
  ### Training Infrastructure
134
 
135
- * **Hardware**: `StableLM Zephyr 3B` was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes.
136
  * **Code Base**: We use our internal script for SFT steps and used [HuggingFace Alignment Handbook script](https://github.com/huggingface/alignment-handbook) for DPO training.
137
 
138
  ## Commitment to Ethical AI
 
45
 
46
  tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-zephyr-3b')
47
  model = AutoModelForCausalLM.from_pretrained(
48
+ 'stabilityai/stablelm-2-zephyr-1_6b',
49
  trust_remote_code=True,
50
  device_map="auto"
51
  )
 
87
  - meta-math/MetaMathQA
88
  - WizardLM/WizardLM_evol_instruct_V2_196k
89
  - Open-Orca/SlimOrca
90
+ - openchat/openchat_sharegpt4_dataset
91
+ - LDJnr/Capybara
92
+
93
  2. Preference Datasets:
94
  - HuggingFaceH4/ultrafeedback_binarized
95
  - Intel/orca_dpo_pairs
96
 
97
  ## Performance
98
 
99
+ ### MT-Bench
100
+ | Model | Size | MT-Bench |
101
+ |-------------------------|------|----------|
102
+ | Mistral-7B-Instruct-v0.2| 7B | 7.61 |
103
+ | Llama2-Chat | 70B | 6.86 |
104
+ | MPT-30B-Chat | 30B | 6.39 |
105
+ | stablelm-zephyr-3b | 3B | 6.64 |
106
+ | **stablelm-2-zephyr-1.6b** | 1.6B | 5.42 |
107
+ | Falcon-40B-Instruct | 40B | 5.17 |
108
+ | Qwen-1.8B-Chat | 1.8B | 4.95 |
109
+ | dolphin-2.6-phi-2 | 2.7B | 4.93 |
110
+ | phi-2 | 2.7B | 4.29 |
111
+ | TinyLlama-1.1B-Chat-v1.0| 1.1B | 3.46 |
112
+
113
+
114
+ ### OpenLLM Leaderboard
115
+
116
+ | Model | Size | Average | ARC Challenge (acc_norm) | HellaSwag (acc_norm) | MMLU (acc_norm) | TruthfulQA (mc2) | Winogrande (acc) | Gsm8k (acc) |
117
+ |----------------------------------------|------|---------|-------------------------|----------------------|-----------------|------------------|------------------|-------------|
118
+ | microsoft/phi-2 | 2.7B | 61.32% | 61.09% | 75.11% | 58.11% | 44.47% | 74.35% | 54.81% |
119
+ | **stabilityai/stablelm-2-zephyr-1_6b** | 1.6B | 49.73% | 43.34% | 69.30% | 41.79% | 45.55% | 63.61% | 34.80% |
120
+ | microsoft/phi-1_5 | 1.3B | 47.69% | 52.90% | 63.79% | 43.89% | 40.89% | 72.22% | 12.43% |
121
+ | stabilityai/stablelm-2-1_6b | 1.6B | 45.54% | 43.43% | 70.49% | 38.93% | 36.65% | 65.90% | 17.82% |
122
+ | mosaicml/mpt-7b | 7B | 44.28% | 47.70% | 77.57% | 30.80% | 33.40% | 72.14% | 4.02% |
123
+ | KnutJaegersberg/Qwen-1_8B-Llamaified* | 1.8B | 44.75% | 37.71% | 58.87% | 46.37% | 39.41% | 61.72% | 24.41% |
124
+ | openlm-research/open_llama_3b_v2 | 3B | 40.28% | 40.27% | 71.60% | 27.12% | 34.78% | 67.01% | 0.91% |
125
+ | iiuae/falcon-rw-1b | 1B | 37.07% | 35.07% | 63.56% | 25.28% | 35.96% | 62.04% | 0.53% |
126
+ | TinyLlama/TinyLlama-1.1B-3T | 1.1B | 36.40% | 33.79% | 60.31% | 26.04% | 37.32% | 59.51% | 1.44% |
127
+
128
+
 
 
 
 
 
 
129
 
130
  ### Training Infrastructure
131
 
132
+ * **Hardware**: `StableLM 2 Zephyr 1.6B` was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes.
133
  * **Code Base**: We use our internal script for SFT steps and used [HuggingFace Alignment Handbook script](https://github.com/huggingface/alignment-handbook) for DPO training.
134
 
135
  ## Commitment to Ethical AI