Update README.md
Browse files
README.md
CHANGED
@@ -45,7 +45,7 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
45 |
|
46 |
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-zephyr-3b')
|
47 |
model = AutoModelForCausalLM.from_pretrained(
|
48 |
-
'stabilityai/stablelm-zephyr-
|
49 |
trust_remote_code=True,
|
50 |
device_map="auto"
|
51 |
)
|
@@ -87,52 +87,49 @@ The dataset is comprised of a mixture of open datasets large-scale datasets avai
|
|
87 |
- meta-math/MetaMathQA
|
88 |
- WizardLM/WizardLM_evol_instruct_V2_196k
|
89 |
- Open-Orca/SlimOrca
|
|
|
|
|
|
|
90 |
2. Preference Datasets:
|
91 |
- HuggingFaceH4/ultrafeedback_binarized
|
92 |
- Intel/orca_dpo_pairs
|
93 |
|
94 |
## Performance
|
95 |
|
96 |
-
### MT-Bench
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
102 |
-
|
103 |
-
| **
|
104 |
-
|
|
105 |
-
|
|
106 |
-
|
|
107 |
-
|
|
108 |
-
|
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
114 |
-
|
115 |
-
|
|
116 |
-
|
|
117 |
-
|
|
118 |
-
|
|
119 |
-
|
|
120 |
-
|
121 |
-
|
122 |
-
|
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
| MMLU (5-shot) | 46.3 |
|
127 |
-
| TruthfulQA (0-shot) | 46.5 |
|
128 |
-
| Winogrande (5-shot) | 65.5 |
|
129 |
-
| GSM8K (5-shot) | 42.3 |
|
130 |
-
| BigBench (Avg) | 35.26 |
|
131 |
-
| AGI Benchmark (Avg) | 33.23 |
|
132 |
|
133 |
### Training Infrastructure
|
134 |
|
135 |
-
* **Hardware**: `StableLM Zephyr
|
136 |
* **Code Base**: We use our internal script for SFT steps and used [HuggingFace Alignment Handbook script](https://github.com/huggingface/alignment-handbook) for DPO training.
|
137 |
|
138 |
## Commitment to Ethical AI
|
|
|
45 |
|
46 |
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-zephyr-3b')
|
47 |
model = AutoModelForCausalLM.from_pretrained(
|
48 |
+
'stabilityai/stablelm-2-zephyr-1_6b',
|
49 |
trust_remote_code=True,
|
50 |
device_map="auto"
|
51 |
)
|
|
|
87 |
- meta-math/MetaMathQA
|
88 |
- WizardLM/WizardLM_evol_instruct_V2_196k
|
89 |
- Open-Orca/SlimOrca
|
90 |
+
- openchat/openchat_sharegpt4_dataset
|
91 |
+
- LDJnr/Capybara
|
92 |
+
|
93 |
2. Preference Datasets:
|
94 |
- HuggingFaceH4/ultrafeedback_binarized
|
95 |
- Intel/orca_dpo_pairs
|
96 |
|
97 |
## Performance
|
98 |
|
99 |
+
### MT-Bench
|
100 |
+
| Model | Size | MT-Bench |
|
101 |
+
|-------------------------|------|----------|
|
102 |
+
| Mistral-7B-Instruct-v0.2| 7B | 7.61 |
|
103 |
+
| Llama2-Chat | 70B | 6.86 |
|
104 |
+
| MPT-30B-Chat | 30B | 6.39 |
|
105 |
+
| stablelm-zephyr-3b | 3B | 6.64 |
|
106 |
+
| **stablelm-2-zephyr-1.6b** | 1.6B | 5.42 |
|
107 |
+
| Falcon-40B-Instruct | 40B | 5.17 |
|
108 |
+
| Qwen-1.8B-Chat | 1.8B | 4.95 |
|
109 |
+
| dolphin-2.6-phi-2 | 2.7B | 4.93 |
|
110 |
+
| phi-2 | 2.7B | 4.29 |
|
111 |
+
| TinyLlama-1.1B-Chat-v1.0| 1.1B | 3.46 |
|
112 |
+
|
113 |
+
|
114 |
+
### OpenLLM Leaderboard
|
115 |
+
|
116 |
+
| Model | Size | Average | ARC Challenge (acc_norm) | HellaSwag (acc_norm) | MMLU (acc_norm) | TruthfulQA (mc2) | Winogrande (acc) | Gsm8k (acc) |
|
117 |
+
|----------------------------------------|------|---------|-------------------------|----------------------|-----------------|------------------|------------------|-------------|
|
118 |
+
| microsoft/phi-2 | 2.7B | 61.32% | 61.09% | 75.11% | 58.11% | 44.47% | 74.35% | 54.81% |
|
119 |
+
| **stabilityai/stablelm-2-zephyr-1_6b** | 1.6B | 49.73% | 43.34% | 69.30% | 41.79% | 45.55% | 63.61% | 34.80% |
|
120 |
+
| microsoft/phi-1_5 | 1.3B | 47.69% | 52.90% | 63.79% | 43.89% | 40.89% | 72.22% | 12.43% |
|
121 |
+
| stabilityai/stablelm-2-1_6b | 1.6B | 45.54% | 43.43% | 70.49% | 38.93% | 36.65% | 65.90% | 17.82% |
|
122 |
+
| mosaicml/mpt-7b | 7B | 44.28% | 47.70% | 77.57% | 30.80% | 33.40% | 72.14% | 4.02% |
|
123 |
+
| KnutJaegersberg/Qwen-1_8B-Llamaified* | 1.8B | 44.75% | 37.71% | 58.87% | 46.37% | 39.41% | 61.72% | 24.41% |
|
124 |
+
| openlm-research/open_llama_3b_v2 | 3B | 40.28% | 40.27% | 71.60% | 27.12% | 34.78% | 67.01% | 0.91% |
|
125 |
+
| iiuae/falcon-rw-1b | 1B | 37.07% | 35.07% | 63.56% | 25.28% | 35.96% | 62.04% | 0.53% |
|
126 |
+
| TinyLlama/TinyLlama-1.1B-3T | 1.1B | 36.40% | 33.79% | 60.31% | 26.04% | 37.32% | 59.51% | 1.44% |
|
127 |
+
|
128 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
### Training Infrastructure
|
131 |
|
132 |
+
* **Hardware**: `StableLM 2 Zephyr 1.6B` was trained on the Stability AI cluster across 8 nodes with 8 A100 80GBs GPUs for each nodes.
|
133 |
* **Code Base**: We use our internal script for SFT steps and used [HuggingFace Alignment Handbook script](https://github.com/huggingface/alignment-handbook) for DPO training.
|
134 |
|
135 |
## Commitment to Ethical AI
|