dn6 HF staff commited on
Commit
306bac6
·
1 Parent(s): abc818b

update README

Browse files
Files changed (1) hide show
  1. README.md +129 -9
README.md CHANGED
@@ -68,38 +68,158 @@ steps), SDXL (50 inference steps), SDXL Turbo (1 inference step) and Würstchen
68
 
69
  ## Code Example
70
 
 
 
 
 
 
 
 
 
71
  ```python
72
  import torch
73
  from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
74
 
75
- device = "cuda"
76
- num_images_per_prompt = 2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
- prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16).to(device)
79
- decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=torch.float16).to(device)
 
 
 
 
 
80
 
81
- prompt = "Anthropomorphic cat dressed as a pilot"
82
  negative_prompt = ""
83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
  prior_output = prior(
85
  prompt=prompt,
86
  height=1024,
87
  width=1024,
88
  negative_prompt=negative_prompt,
89
  guidance_scale=4.0,
90
- num_images_per_prompt=num_images_per_prompt,
91
  num_inference_steps=20
92
  )
 
 
93
  decoder_output = decoder(
94
- image_embeddings=prior_output.image_embeddings.half(),
95
  prompt=prompt,
96
  negative_prompt=negative_prompt,
97
  guidance_scale=0.0,
98
  output_type="pil",
99
  num_inference_steps=10
100
- ).images
 
 
101
 
102
- #Now decoder_output is a list with your PIL images
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
  ```
104
 
105
  ## Uses
 
68
 
69
  ## Code Example
70
 
71
+ **Note:** In order to use the `torch.bfloat16` data type with the `StableCascadeDecoderPipeline` you need to have PyTorch 2.2.0 or higher installed. This also means that using the `StableCascadeCombinedPipeline` with `torch.bfloat16` requires PyTorch 2.2.0 or higher, since it calls the StableCascadeDecoderPipeline internally.
72
+
73
+ If it is not possible to install PyTorch 2.2.0 or higher in your environment, the `StableCascadeDecoderPipeline` can be used on its own with the torch.float16 data type. You can download the full precision or bf16 variant weights for the pipeline and cast the weights to torch.float16.
74
+
75
+ ```shell
76
+ pip install diffusers
77
+ ```
78
+
79
  ```python
80
  import torch
81
  from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
82
 
83
+ prompt = "an image of a shiba inu, donning a spacesuit and helmet"
84
+ negative_prompt = ""
85
+
86
+ prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", variant="bf16", torch_dtype=torch.bfloat16)
87
+ decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.float16)
88
+
89
+ prior.enable_model_cpu_offload()
90
+ prior_output = prior(
91
+ prompt=prompt,
92
+ height=1024,
93
+ width=1024,
94
+ negative_prompt=negative_prompt,
95
+ guidance_scale=4.0,
96
+ num_images_per_prompt=1,
97
+ num_inference_steps=20
98
+ )
99
+
100
+ decoder.enable_model_cpu_offload()
101
+ decoder_output = decoder(
102
+ image_embeddings=prior_output.image_embeddings.to(torch.float16),
103
+ prompt=prompt,
104
+ negative_prompt=negative_prompt,
105
+ guidance_scale=0.0,
106
+ output_type="pil",
107
+ num_inference_steps=10
108
+ ).images[0]
109
+ decoder_output.save("cascade.png")
110
+ ```
111
+
112
+ ### Using the Lite Version of the Stage B and Stage C models
113
+
114
+ ```python
115
+ import torch
116
+ from diffusers import (
117
+ StableCascadeDecoderPipeline,
118
+ StableCascadePriorPipeline,
119
+ StableCascadeUNet,
120
+ )
121
+
122
+ prompt = "an image of a shiba inu, donning a spacesuit and helmet"
123
+ negative_prompt = ""
124
+
125
+ prior_unet = StableCascadeUNet.from_pretrained("stabilityai/stable-cascade-prior", subfolder="prior_lite")
126
+ decoder_unet = StableCascadeUNet.from_pretrained("stabilityai/stable-cascade", subfolder="decoder_lite")
127
+
128
+ prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", prior=prior_unet)
129
+ decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", decoder=decoder_unet)
130
+
131
+ prior.enable_model_cpu_offload()
132
+ prior_output = prior(
133
+ prompt=prompt,
134
+ height=1024,
135
+ width=1024,
136
+ negative_prompt=negative_prompt,
137
+ guidance_scale=4.0,
138
+ num_images_per_prompt=1,
139
+ num_inference_steps=20
140
+ )
141
+
142
+ decoder.enable_model_cpu_offload()
143
+ decoder_output = decoder(
144
+ image_embeddings=prior_output.image_embeddings,
145
+ prompt=prompt,
146
+ negative_prompt=negative_prompt,
147
+ guidance_scale=0.0,
148
+ output_type="pil",
149
+ num_inference_steps=10
150
+ ).images[0]
151
+ decoder_output.save("cascade.png")
152
+ ```
153
+
154
+ ### Loading original checkpoints with `from_single_file`
155
+
156
+ Loading the original format checkpoints is supported via `from_single_file` method in the StableCascadeUNet.
157
 
158
+ ```python
159
+ import torch
160
+ from diffusers import (
161
+ StableCascadeDecoderPipeline,
162
+ StableCascadePriorPipeline,
163
+ StableCascadeUNet,
164
+ )
165
 
166
+ prompt = "an image of a shiba inu, donning a spacesuit and helmet"
167
  negative_prompt = ""
168
 
169
+ prior_unet = StableCascadeUNet.from_single_file(
170
+ "https://huggingface.co/stabilityai/stable-cascade/resolve/main/stage_c_bf16.safetensors",
171
+ torch_dtype=torch.bfloat16
172
+ )
173
+ decoder_unet = StableCascadeUNet.from_single_file(
174
+ "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_bf16.safetensors",
175
+ torch_dtype=torch.bfloat16
176
+ )
177
+
178
+ prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", prior=prior_unet, torch_dtype=torch.bfloat16)
179
+ decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", decoder=decoder_unet, torch_dtype=torch.bfloat16)
180
+
181
+ prior.enable_model_cpu_offload()
182
  prior_output = prior(
183
  prompt=prompt,
184
  height=1024,
185
  width=1024,
186
  negative_prompt=negative_prompt,
187
  guidance_scale=4.0,
188
+ num_images_per_prompt=1,
189
  num_inference_steps=20
190
  )
191
+
192
+ decoder.enable_model_cpu_offload()
193
  decoder_output = decoder(
194
+ image_embeddings=prior_output.image_embeddings,
195
  prompt=prompt,
196
  negative_prompt=negative_prompt,
197
  guidance_scale=0.0,
198
  output_type="pil",
199
  num_inference_steps=10
200
+ ).images[0]
201
+ decoder_output.save("cascade-single-file.png")
202
+ ```
203
 
204
+ ### Using the `StableCascadeCombinedPipeline`
205
+
206
+ ```python
207
+ from diffsers import StableCascadeCombinedPipeline
208
+
209
+ pipe = StableCascadeCombinedPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.bfloat16)
210
+
211
+ prompt = "an image of a shiba inu, donning a spacesuit and helmet"
212
+ negative_prompt = ""
213
+
214
+ pipe(
215
+ prompt="photorealistic portrait artwork of an floral robot with a dark night cyberpunk city background",
216
+ negative_prompt="",
217
+ num_inference_steps=10,
218
+ prior_num_inference_steps=20,
219
+ prior_guidance_scale=3.0,
220
+ width=1024,
221
+ height=1024,
222
+ ).images[0].save("cascade-combined.png")
223
  ```
224
 
225
  ## Uses