File size: 29,252 Bytes
254bcbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 |
# coding=utf-8
# Copyright 2023 Stability and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch JapaneseStableLMAlpha model. """
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .configuration_japanese_stablelm_alpha import JapaneseStableLMAlphaConfig
logger = logging.get_logger(__name__)
class JapaneseStableLMAlphaPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = JapaneseStableLMAlphaConfig
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
_no_split_modules = ["DecoderLayer"]
_skip_keys_device_placement = "past_key_values"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
if module.bias is not None:
module.bias.data.zero_()
if module.weight is not None:
module.weight.data.fill_(1.0)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, JapaneseStableLMAlphaModel):
module.gradient_checkpointing = value
class JapaneseStableLMAlphaModel(JapaneseStableLMAlphaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_in
def set_input_embeddings(self, value):
self.embed_in = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
use_cache = use_cache if use_cache is not None else self.config.use_cache
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * self.config.num_hidden_layers)
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(past_length, seq_length + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
# Attention mask.
if attention_mask is not None:
assert batch_size > 0, "batch_size has to be defined and > 0"
attention_mask = attention_mask.view(batch_size, -1)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = attention_mask[:, None, None, :]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
if inputs_embeds is None:
inputs_embeds = self.embed_in(input_ids)
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
presents = () if use_cache else None
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for layer_past
return module(*inputs, use_cache, None, output_attentions)
return custom_forward
outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer),
hidden_states,
attention_mask,
position_ids,
head_mask[i],
)
else:
outputs = layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask[i],
layer_past=layer_past,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
hidden_states = self.final_layer_norm(hidden_states)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
class DecoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.use_parallel_residual = config.use_parallel_residual
self.input_layernorm = nn.LayerNorm(
config.hidden_size,
eps=config.layer_norm_eps,
elementwise_affine=False,
)
self.post_attention_layernorm = nn.LayerNorm(
config.hidden_size,
eps=config.layer_norm_eps
)
self.attention = Attention(config)
self.mlp = MLP(config)
def forward(
self,
hidden_states: Optional[torch.FloatTensor],
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
layer_past: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
):
attention_layer_outputs = self.attention(
self.input_layernorm(hidden_states),
attention_mask=attention_mask,
position_ids=position_ids,
layer_past=layer_past,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attention_layer_outputs[0] # output_attn: attn_output, present, (attn_weights)
outputs = attention_layer_outputs[1:]
mlp_output = self.mlp(self.post_attention_layernorm(hidden_states))
hidden_states = hidden_states + mlp_output + attn_output
if use_cache:
outputs = (hidden_states,) + outputs # hidden_states, present, (attn_weights)
else:
outputs = (hidden_states,) + outputs[1:] # hidden_states, (attn_weights)
return outputs
class MLP(nn.Module):
def __init__(self, config: JapaneseStableLMAlphaConfig):
super().__init__()
hidden_size = config.hidden_size
multiple_of = 256
ff_dim = int(8 * hidden_size / 3)
intermediate_size = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
self.packed_input_proj = torch.nn.Linear(hidden_size, 2 * intermediate_size, bias=False)
self.out_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
self.act = nn.SiLU()
def forward(self, x: torch.Tensor) -> torch.Tensor:
ff, ff_gate = self.packed_input_proj(x).chunk(2, dim=-1)
return self.out_proj(ff * self.act(ff_gate))
class RotaryEmbedding(torch.nn.Module):
"""Based on Tri Dao's XPos: https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/layers/rotary.py"""
def __init__(
self,
dim: int,
max_position_embeddings: int,
base: int = 10_000,
scale_base: int = 512,
device: str = None
):
super().__init__()
self.dim = dim
self.seq_len_cached = max_position_embeddings
# Set up `inv_freq` term
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim))
self.register_buffer("inv_freq", inv_freq)
# Set up `scale` term
self.scale_base = scale_base
scale = (
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
if scale_base is not None else None
)
self.register_buffer("scale", scale)
# Seet up `cos..` and `sin...` cache terms
t = torch.arange(self.seq_len_cached, device=device, dtype=torch.float32)
freqs = torch.outer(t, self.inv_freq)
# freqs = torch.cat((freqs, freqs), dim=-1)
seq_range = torch.arange(self.seq_len_cached, dtype=self.scale.dtype, device=self.scale.device)
power = (seq_range - self.seq_len_cached // 2) / self.scale_base
scale_cached = self.scale.to(device=power.device) ** power.unsqueeze(-1)
# scale_cached = torch.cat((scale_cached, scale_cached), dim=-1)
self.register_buffer("cos_cached", torch.cos(freqs) * scale_cached, persistent=False)
self.register_buffer("sin_cached", torch.sin(freqs) * scale_cached, persistent=False)
self.register_buffer("cos_k_cached", torch.cos(freqs) / scale_cached, persistent=False)
self.register_buffer("sin_k_cached", torch.sin(freqs) / scale_cached, persistent=False)
def forward(self, x, seq_len=None):
if seq_len > self.seq_len_cached:
self.seq_len_cached = seq_len
t = torch.arange(seq_len, device=x.device, dtype=torch.float32)
freqs = torch.outer(t, self.inv_freq)
freqs = torch.cat((freqs, freqs), dim=-1)
seq_range = torch.arange(self.seq_len_cached, dtype=self.scale.dtype, device=self.scale.device)
power = (seq_range - self.seq_len_cached // 2) / self.scale_base
scale_cached = self.scale.to(device=power.device) ** power.unsqueeze(-1)
scale_cached = torch.cat((scale_cached, scale_cached), dim=-1)
self.register_buffer("cos_cached", torch.cos(freqs) * scale_cached, persistent=False)
self.register_buffer("sin_cached", torch.sin(freqs) * scale_cached, persistent=False)
self.register_buffer("cos_k_cached", torch.cos(freqs) / scale_cached, persistent=False)
self.register_buffer("sin_k_cached", torch.sin(freqs) / scale_cached, persistent=False)
return (
self.cos_cached[:seq_len, ...],
self.sin_cached[:seq_len, ...],
self.cos_k_cached[:seq_len, ...],
self.sin_k_cached[:seq_len, ...],
)
def rotate_half(x):
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, cos_k=None, sin_k=None):
"""
q, k: [bs, num_heads, seq_len, rot_dim]
cos, sin: [seq_len, rot_dim / 2]
position_ids: [bs, seq_len]
"""
# print(f"q: {q.shape}, k: {k.shape}, cos: {cos.shape}, sin: {sin.shape}, position_ids: {position_ids.shape}")
import einops
cos = einops.repeat(cos, 's r -> s (2 r)')
sin = einops.repeat(sin, 's r -> s (2 r)')
cos_k = einops.repeat(cos_k, 's r -> s (2 r)')
sin_k = einops.repeat(sin_k, 's r -> s (2 r)')
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, rot_dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, rot_dim]
cos_k = cos_k[position_ids].unsqueeze(1) # [bs, 1, seq_len, rot_dim]
sin_k = sin_k[position_ids].unsqueeze(1) # [bs, 1, seq_len, rot_dim]
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos_k) + (rotate_half(k) * sin_k)
return q_embed, k_embed
class Attention(nn.Module):
def __init__(self, config):
super().__init__()
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
"The hidden size is not divisble by the number of attention heads! Make sure to update them"
)
self.head_size = self.hidden_size // self.num_attention_heads
max_positions = config.max_position_embeddings
self.register_buffer(
"bias",
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
1, 1, max_positions, max_positions
),
persistent=False,
)
self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False)
self.rotary_ndims = int(self.head_size * config.rotary_pct)
self.rotary_emb = RotaryEmbedding(
self.rotary_ndims,
max_position_embeddings=config.max_position_embeddings,
base=config.rotary_emb_base,
scale_base=config.rotary_scale_base,
)
self.register_buffer(
"norm_factor",
torch.sqrt(torch.tensor(self.head_size, dtype=torch.float32)).to(torch.get_default_dtype()),
persistent=False,
)
self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
self.dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: torch.FloatTensor,
position_ids: torch.LongTensor,
head_mask: Optional[torch.FloatTensor] = None,
layer_past: Optional[Tuple[torch.Tensor]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
):
has_layer_past = layer_past is not None
# Compute QKV
# Attention heads [batch, seq_len, hidden_size]
# --> [batch, seq_len, (np * 3 * head_size)]
qkv = self.query_key_value(hidden_states)
# [batch, seq_len, (num_heads * 3 * head_size)]
# --> [batch, seq_len, num_heads, 3 * head_size]
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
qkv = qkv.view(*new_qkv_shape)
# [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3)
value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3)
# Compute rotary embeddings on rotary_ndims
query_rot = query[..., : self.rotary_ndims]
query_pass = query[..., self.rotary_ndims :]
key_rot = key[..., : self.rotary_ndims]
key_pass = key[..., self.rotary_ndims :]
# Compute token offset for rotary embeddings (when decoding)
kv_seq_len = key.shape[-2]
if has_layer_past:
kv_seq_len += layer_past[0].shape[-2]
# Add rotary embeddings to query and key
# TODO: Check if using xpos
cos, sin, cos_k, sin_k = self.rotary_emb(value, seq_len=kv_seq_len)
query, key = apply_rotary_pos_emb(
query_rot, key_rot, cos, sin, position_ids, cos_k=cos_k, sin_k=sin_k)
query = torch.cat((query, query_pass), dim=-1)
key = torch.cat((key, key_pass), dim=-1)
# Cache QKV values
if has_layer_past:
past_key = layer_past[0]
past_value = layer_past[1]
key = torch.cat((past_key, key), dim=-2)
value = torch.cat((past_value, value), dim=-2)
present = (key, value) if use_cache else None
# Compute attention
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
# Merge attn_head_size dim and num_attn_heads dim into hidden dim
# [bs, seq_len, num_attention_heads, attn_head_size]
attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
attn_output = attn_output.view(attn_output.size(0), attn_output.size(1), self.num_attention_heads * self.head_size)
attn_output = self.dense(attn_output)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
# q, k, v: [bs, num_attention_heads, seq_len, attn_head_size]
# compute causal mask from causal mask buffer
batch_size, num_attention_heads, query_length, attn_head_size = query.size()
key_length = key.size(-2)
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
query = query.view(batch_size * num_attention_heads, query_length, attn_head_size)
key = key.view(batch_size * num_attention_heads, key_length, attn_head_size)
attn_scores = torch.zeros(
batch_size * num_attention_heads,
query_length,
key_length,
dtype=query.dtype,
device=key.device,
)
attn_scores = torch.baddbmm(
attn_scores,
query,
key.transpose(1, 2),
beta=1.0,
alpha=(torch.tensor(1.0, dtype=self.norm_factor.dtype, device=self.norm_factor.device) / self.norm_factor),
)
attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length)
mask_value = torch.finfo(attn_scores.dtype).min
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype, device=attn_scores.device)
attn_scores = torch.where(causal_mask, attn_scores, mask_value)
if attention_mask is not None:
# Apply the attention mask
attn_scores = attn_scores + attention_mask
# NOTE: Upcast to float32
attn_weights = nn.functional.softmax(attn_scores, dim=-1, dtype=torch.float32).type_as(value)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = torch.matmul(attn_weights, value)
return attn_output, attn_weights
def attention_mask_func(attention_scores, ltor_mask):
attention_scores.masked_fill_(~ltor_mask, torch.finfo(attention_scores.dtype).min)
return attention_scores
class JapaneseStableLMAlphaForCausalLM(JapaneseStableLMAlphaPreTrainedModel):
_tied_weights_keys = ["embed_out.weight"]
def __init__(self, config):
super().__init__(config)
self.transformer = JapaneseStableLMAlphaModel(config)
self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.embed_out
def set_output_embeddings(self, new_embeddings):
self.embed_out = new_embeddings
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Example:
```python
>>> import torch
>>> from transformers import LlamaTokenizer, JapaneseStableLMAlphaForCausalLM, JapaneseStableLMAlphaConfig
>>> tokenizer = LlamaTokenizer.from_pretrained("novelai/nerdstash-tokenizer-v1")
>>> config = JapaneseStableLMAlphaConfig.from_pretrained("stabilityai/stablelm-ja-base-alpha-7b")
>>> config.is_decoder = True
>>> model = JapaneseStableLMAlphaForCausalLM.from_pretrained("stabilityai/stablelm-ja-base-alpha-7b", config=config, trust_remote_code=True)
>>> inputs = tokenizer("日本語の美しいところは、", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
lm_logits = self.embed_out(hidden_states)
lm_loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(lm_logits.device)
# we are doing next-token prediction; shift prediction scores and input ids by one
shift_logits = lm_logits[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithPast(
loss=lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
input_shape = input_ids.shape
# cut decoder_input_ids if past is used
if past_key_values and past_key_values[0] is not None:
input_ids = input_ids[:, -1:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"position_ids": position_ids,
}
)
return model_inputs
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past |