st-karlos-efood commited on
Commit
cfdd06c
·
verified ·
1 Parent(s): 84f5bb9

Add SetFit model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,1269 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ datasets:
9
+ - ethos
10
+ metrics:
11
+ - accuracy
12
+ widget:
13
+ - text: "This is what happens when you'\x80\x99re a bitch and a cunt. Looks like\
14
+ \ that guy called it correctly. Only a bitch and a cunt would think she could\
15
+ \ lay hands on another with no repercussions. Maybe after that seizure she won'\x80\
16
+ \x99t be as much of a bitchy cunt."
17
+ - text: What if we send every men to mars to start a new life there! They are useless
18
+ here (Of course milk them first to store their juices)
19
+ - text: Honestly, go fuck yourself! bitch!
20
+ - text: Hindus take my ass please
21
+ - text: Im going to choke you with your cross necklace idiotic religious pig
22
+ pipeline_tag: text-classification
23
+ inference: false
24
+ base_model: lighteternal/stsb-xlm-r-greek-transfer
25
+ model-index:
26
+ - name: SetFit with lighteternal/stsb-xlm-r-greek-transfer
27
+ results:
28
+ - task:
29
+ type: text-classification
30
+ name: Text Classification
31
+ dataset:
32
+ name: ethos
33
+ type: ethos
34
+ split: test
35
+ metrics:
36
+ - type: accuracy
37
+ value: 0.20533333333333334
38
+ name: Accuracy
39
+ ---
40
+
41
+ # SetFit with lighteternal/stsb-xlm-r-greek-transfer
42
+
43
+ This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [ethos](https://huggingface.co/datasets/ethos) dataset that can be used for Text Classification. This SetFit model uses [lighteternal/stsb-xlm-r-greek-transfer](https://huggingface.co/lighteternal/stsb-xlm-r-greek-transfer) as the Sentence Transformer embedding model. A ClassifierChain instance is used for classification.
44
+
45
+ The model has been trained using an efficient few-shot learning technique that involves:
46
+
47
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
48
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
49
+
50
+ ## Model Details
51
+
52
+ ### Model Description
53
+ - **Model Type:** SetFit
54
+ - **Sentence Transformer body:** [lighteternal/stsb-xlm-r-greek-transfer](https://huggingface.co/lighteternal/stsb-xlm-r-greek-transfer)
55
+ - **Classification head:** a ClassifierChain instance
56
+ - **Maximum Sequence Length:** 400 tokens
57
+ <!-- - **Number of Classes:** Unknown -->
58
+ - **Training Dataset:** [ethos](https://huggingface.co/datasets/ethos)
59
+ <!-- - **Language:** Unknown -->
60
+ <!-- - **License:** Unknown -->
61
+
62
+ ### Model Sources
63
+
64
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
65
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
66
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
67
+
68
+ ## Evaluation
69
+
70
+ ### Metrics
71
+ | Label | Accuracy |
72
+ |:--------|:---------|
73
+ | **all** | 0.2053 |
74
+
75
+ ## Uses
76
+
77
+ ### Direct Use for Inference
78
+
79
+ First install the SetFit library:
80
+
81
+ ```bash
82
+ pip install setfit
83
+ ```
84
+
85
+ Then you can load this model and run inference.
86
+
87
+ ```python
88
+ from setfit import SetFitModel
89
+
90
+ # Download from the 🤗 Hub
91
+ model = SetFitModel.from_pretrained("st-karlos-efood/setfit-multilabel-example-classifier-chain-25iters")
92
+ # Run inference
93
+ preds = model("Hindus take my ass please")
94
+ ```
95
+
96
+ <!--
97
+ ### Downstream Use
98
+
99
+ *List how someone could finetune this model on their own dataset.*
100
+ -->
101
+
102
+ <!--
103
+ ### Out-of-Scope Use
104
+
105
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
106
+ -->
107
+
108
+ <!--
109
+ ## Bias, Risks and Limitations
110
+
111
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
112
+ -->
113
+
114
+ <!--
115
+ ### Recommendations
116
+
117
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
118
+ -->
119
+
120
+ ## Training Details
121
+
122
+ ### Training Set Metrics
123
+ | Training set | Min | Median | Max |
124
+ |:-------------|:----|:-------|:----|
125
+ | Word count | 3 | 9.9307 | 61 |
126
+
127
+ ### Training Hyperparameters
128
+ - batch_size: (64, 64)
129
+ - num_epochs: (10, 10)
130
+ - max_steps: -1
131
+ - sampling_strategy: oversampling
132
+ - num_iterations: 25
133
+ - body_learning_rate: (2e-05, 2e-05)
134
+ - head_learning_rate: 2e-05
135
+ - loss: CosineSimilarityLoss
136
+ - distance_metric: cosine_distance
137
+ - margin: 0.25
138
+ - end_to_end: False
139
+ - use_amp: False
140
+ - warmup_proportion: 0.1
141
+ - seed: 42
142
+ - eval_max_steps: -1
143
+ - load_best_model_at_end: False
144
+
145
+ ### Training Results
146
+ | Epoch | Step | Training Loss | Validation Loss |
147
+ |:------:|:-----:|:-------------:|:---------------:|
148
+ | 0.0006 | 1 | 0.2027 | - |
149
+ | 0.0305 | 50 | 0.2092 | - |
150
+ | 0.0609 | 100 | 0.1605 | - |
151
+ | 0.0914 | 150 | 0.1726 | - |
152
+ | 0.1219 | 200 | 0.1322 | - |
153
+ | 0.1523 | 250 | 0.1252 | - |
154
+ | 0.1828 | 300 | 0.1404 | - |
155
+ | 0.2133 | 350 | 0.0927 | - |
156
+ | 0.2438 | 400 | 0.1039 | - |
157
+ | 0.2742 | 450 | 0.0904 | - |
158
+ | 0.3047 | 500 | 0.1194 | - |
159
+ | 0.3352 | 550 | 0.1024 | - |
160
+ | 0.3656 | 600 | 0.151 | - |
161
+ | 0.3961 | 650 | 0.0842 | - |
162
+ | 0.4266 | 700 | 0.1158 | - |
163
+ | 0.4570 | 750 | 0.214 | - |
164
+ | 0.4875 | 800 | 0.1167 | - |
165
+ | 0.5180 | 850 | 0.1174 | - |
166
+ | 0.5484 | 900 | 0.1567 | - |
167
+ | 0.5789 | 950 | 0.0726 | - |
168
+ | 0.6094 | 1000 | 0.0741 | - |
169
+ | 0.6399 | 1050 | 0.0841 | - |
170
+ | 0.6703 | 1100 | 0.0606 | - |
171
+ | 0.7008 | 1150 | 0.1005 | - |
172
+ | 0.7313 | 1200 | 0.1236 | - |
173
+ | 0.7617 | 1250 | 0.141 | - |
174
+ | 0.7922 | 1300 | 0.1611 | - |
175
+ | 0.8227 | 1350 | 0.1068 | - |
176
+ | 0.8531 | 1400 | 0.0542 | - |
177
+ | 0.8836 | 1450 | 0.1635 | - |
178
+ | 0.9141 | 1500 | 0.106 | - |
179
+ | 0.9445 | 1550 | 0.0817 | - |
180
+ | 0.9750 | 1600 | 0.1157 | - |
181
+ | 1.0055 | 1650 | 0.1031 | - |
182
+ | 1.0360 | 1700 | 0.0969 | - |
183
+ | 1.0664 | 1750 | 0.0742 | - |
184
+ | 1.0969 | 1800 | 0.0697 | - |
185
+ | 1.1274 | 1850 | 0.1072 | - |
186
+ | 1.1578 | 1900 | 0.0593 | - |
187
+ | 1.1883 | 1950 | 0.1102 | - |
188
+ | 1.2188 | 2000 | 0.1586 | - |
189
+ | 1.2492 | 2050 | 0.1523 | - |
190
+ | 1.2797 | 2100 | 0.0921 | - |
191
+ | 1.3102 | 2150 | 0.0634 | - |
192
+ | 1.3406 | 2200 | 0.073 | - |
193
+ | 1.3711 | 2250 | 0.1131 | - |
194
+ | 1.4016 | 2300 | 0.0493 | - |
195
+ | 1.4321 | 2350 | 0.106 | - |
196
+ | 1.4625 | 2400 | 0.0585 | - |
197
+ | 1.4930 | 2450 | 0.1058 | - |
198
+ | 1.5235 | 2500 | 0.0892 | - |
199
+ | 1.5539 | 2550 | 0.0649 | - |
200
+ | 1.5844 | 2600 | 0.0481 | - |
201
+ | 1.6149 | 2650 | 0.1359 | - |
202
+ | 1.6453 | 2700 | 0.0734 | - |
203
+ | 1.6758 | 2750 | 0.0762 | - |
204
+ | 1.7063 | 2800 | 0.1082 | - |
205
+ | 1.7367 | 2850 | 0.1274 | - |
206
+ | 1.7672 | 2900 | 0.0724 | - |
207
+ | 1.7977 | 2950 | 0.0842 | - |
208
+ | 1.8282 | 3000 | 0.1558 | - |
209
+ | 1.8586 | 3050 | 0.071 | - |
210
+ | 1.8891 | 3100 | 0.1716 | - |
211
+ | 1.9196 | 3150 | 0.1078 | - |
212
+ | 1.9500 | 3200 | 0.1037 | - |
213
+ | 1.9805 | 3250 | 0.0773 | - |
214
+ | 2.0110 | 3300 | 0.0706 | - |
215
+ | 2.0414 | 3350 | 0.1577 | - |
216
+ | 2.0719 | 3400 | 0.0825 | - |
217
+ | 2.1024 | 3450 | 0.1227 | - |
218
+ | 2.1328 | 3500 | 0.1069 | - |
219
+ | 2.1633 | 3550 | 0.1037 | - |
220
+ | 2.1938 | 3600 | 0.0595 | - |
221
+ | 2.2243 | 3650 | 0.0569 | - |
222
+ | 2.2547 | 3700 | 0.0967 | - |
223
+ | 2.2852 | 3750 | 0.0632 | - |
224
+ | 2.3157 | 3800 | 0.1014 | - |
225
+ | 2.3461 | 3850 | 0.0868 | - |
226
+ | 2.3766 | 3900 | 0.0986 | - |
227
+ | 2.4071 | 3950 | 0.0585 | - |
228
+ | 2.4375 | 4000 | 0.063 | - |
229
+ | 2.4680 | 4050 | 0.1124 | - |
230
+ | 2.4985 | 4100 | 0.0444 | - |
231
+ | 2.5289 | 4150 | 0.1547 | - |
232
+ | 2.5594 | 4200 | 0.1087 | - |
233
+ | 2.5899 | 4250 | 0.0946 | - |
234
+ | 2.6204 | 4300 | 0.0261 | - |
235
+ | 2.6508 | 4350 | 0.0414 | - |
236
+ | 2.6813 | 4400 | 0.0715 | - |
237
+ | 2.7118 | 4450 | 0.0831 | - |
238
+ | 2.7422 | 4500 | 0.0779 | - |
239
+ | 2.7727 | 4550 | 0.1049 | - |
240
+ | 2.8032 | 4600 | 0.1224 | - |
241
+ | 2.8336 | 4650 | 0.0926 | - |
242
+ | 2.8641 | 4700 | 0.0745 | - |
243
+ | 2.8946 | 4750 | 0.0642 | - |
244
+ | 2.9250 | 4800 | 0.0536 | - |
245
+ | 2.9555 | 4850 | 0.1296 | - |
246
+ | 2.9860 | 4900 | 0.0596 | - |
247
+ | 3.0165 | 4950 | 0.0361 | - |
248
+ | 3.0469 | 5000 | 0.0592 | - |
249
+ | 3.0774 | 5050 | 0.0656 | - |
250
+ | 3.1079 | 5100 | 0.0584 | - |
251
+ | 3.1383 | 5150 | 0.0729 | - |
252
+ | 3.1688 | 5200 | 0.1037 | - |
253
+ | 3.1993 | 5250 | 0.0685 | - |
254
+ | 3.2297 | 5300 | 0.0511 | - |
255
+ | 3.2602 | 5350 | 0.0427 | - |
256
+ | 3.2907 | 5400 | 0.1067 | - |
257
+ | 3.3211 | 5450 | 0.0807 | - |
258
+ | 3.3516 | 5500 | 0.0815 | - |
259
+ | 3.3821 | 5550 | 0.1016 | - |
260
+ | 3.4126 | 5600 | 0.1034 | - |
261
+ | 3.4430 | 5650 | 0.1257 | - |
262
+ | 3.4735 | 5700 | 0.0877 | - |
263
+ | 3.5040 | 5750 | 0.0808 | - |
264
+ | 3.5344 | 5800 | 0.0926 | - |
265
+ | 3.5649 | 5850 | 0.0967 | - |
266
+ | 3.5954 | 5900 | 0.0401 | - |
267
+ | 3.6258 | 5950 | 0.0547 | - |
268
+ | 3.6563 | 6000 | 0.0872 | - |
269
+ | 3.6868 | 6050 | 0.0808 | - |
270
+ | 3.7172 | 6100 | 0.1125 | - |
271
+ | 3.7477 | 6150 | 0.1431 | - |
272
+ | 3.7782 | 6200 | 0.1039 | - |
273
+ | 3.8087 | 6250 | 0.061 | - |
274
+ | 3.8391 | 6300 | 0.1022 | - |
275
+ | 3.8696 | 6350 | 0.0394 | - |
276
+ | 3.9001 | 6400 | 0.0892 | - |
277
+ | 3.9305 | 6450 | 0.0535 | - |
278
+ | 3.9610 | 6500 | 0.0793 | - |
279
+ | 3.9915 | 6550 | 0.0462 | - |
280
+ | 4.0219 | 6600 | 0.0686 | - |
281
+ | 4.0524 | 6650 | 0.0506 | - |
282
+ | 4.0829 | 6700 | 0.1012 | - |
283
+ | 4.1133 | 6750 | 0.0852 | - |
284
+ | 4.1438 | 6800 | 0.0729 | - |
285
+ | 4.1743 | 6850 | 0.1007 | - |
286
+ | 4.2048 | 6900 | 0.0431 | - |
287
+ | 4.2352 | 6950 | 0.0683 | - |
288
+ | 4.2657 | 7000 | 0.0712 | - |
289
+ | 4.2962 | 7050 | 0.0732 | - |
290
+ | 4.3266 | 7100 | 0.0374 | - |
291
+ | 4.3571 | 7150 | 0.1015 | - |
292
+ | 4.3876 | 7200 | 0.15 | - |
293
+ | 4.4180 | 7250 | 0.0852 | - |
294
+ | 4.4485 | 7300 | 0.0714 | - |
295
+ | 4.4790 | 7350 | 0.0587 | - |
296
+ | 4.5094 | 7400 | 0.1335 | - |
297
+ | 4.5399 | 7450 | 0.1123 | - |
298
+ | 4.5704 | 7500 | 0.0538 | - |
299
+ | 4.6009 | 7550 | 0.0989 | - |
300
+ | 4.6313 | 7600 | 0.0878 | - |
301
+ | 4.6618 | 7650 | 0.0963 | - |
302
+ | 4.6923 | 7700 | 0.0991 | - |
303
+ | 4.7227 | 7750 | 0.0776 | - |
304
+ | 4.7532 | 7800 | 0.0663 | - |
305
+ | 4.7837 | 7850 | 0.0696 | - |
306
+ | 4.8141 | 7900 | 0.0704 | - |
307
+ | 4.8446 | 7950 | 0.0626 | - |
308
+ | 4.8751 | 8000 | 0.0657 | - |
309
+ | 4.9055 | 8050 | 0.0567 | - |
310
+ | 4.9360 | 8100 | 0.0619 | - |
311
+ | 4.9665 | 8150 | 0.0792 | - |
312
+ | 4.9970 | 8200 | 0.0671 | - |
313
+ | 5.0274 | 8250 | 0.1068 | - |
314
+ | 5.0579 | 8300 | 0.1111 | - |
315
+ | 5.0884 | 8350 | 0.0968 | - |
316
+ | 5.1188 | 8400 | 0.0577 | - |
317
+ | 5.1493 | 8450 | 0.0934 | - |
318
+ | 5.1798 | 8500 | 0.0854 | - |
319
+ | 5.2102 | 8550 | 0.0587 | - |
320
+ | 5.2407 | 8600 | 0.048 | - |
321
+ | 5.2712 | 8650 | 0.0829 | - |
322
+ | 5.3016 | 8700 | 0.0985 | - |
323
+ | 5.3321 | 8750 | 0.107 | - |
324
+ | 5.3626 | 8800 | 0.0662 | - |
325
+ | 5.3931 | 8850 | 0.0799 | - |
326
+ | 5.4235 | 8900 | 0.0948 | - |
327
+ | 5.4540 | 8950 | 0.087 | - |
328
+ | 5.4845 | 9000 | 0.0429 | - |
329
+ | 5.5149 | 9050 | 0.0699 | - |
330
+ | 5.5454 | 9100 | 0.0911 | - |
331
+ | 5.5759 | 9150 | 0.1268 | - |
332
+ | 5.6063 | 9200 | 0.1042 | - |
333
+ | 5.6368 | 9250 | 0.0642 | - |
334
+ | 5.6673 | 9300 | 0.0736 | - |
335
+ | 5.6977 | 9350 | 0.0329 | - |
336
+ | 5.7282 | 9400 | 0.126 | - |
337
+ | 5.7587 | 9450 | 0.0991 | - |
338
+ | 5.7892 | 9500 | 0.1038 | - |
339
+ | 5.8196 | 9550 | 0.0842 | - |
340
+ | 5.8501 | 9600 | 0.0623 | - |
341
+ | 5.8806 | 9650 | 0.0642 | - |
342
+ | 5.9110 | 9700 | 0.0902 | - |
343
+ | 5.9415 | 9750 | 0.0994 | - |
344
+ | 5.9720 | 9800 | 0.0685 | - |
345
+ | 6.0024 | 9850 | 0.0573 | - |
346
+ | 6.0329 | 9900 | 0.0537 | - |
347
+ | 6.0634 | 9950 | 0.0478 | - |
348
+ | 6.0938 | 10000 | 0.0513 | - |
349
+ | 6.1243 | 10050 | 0.0529 | - |
350
+ | 6.1548 | 10100 | 0.095 | - |
351
+ | 6.1853 | 10150 | 0.0578 | - |
352
+ | 6.2157 | 10200 | 0.0918 | - |
353
+ | 6.2462 | 10250 | 0.0594 | - |
354
+ | 6.2767 | 10300 | 0.1015 | - |
355
+ | 6.3071 | 10350 | 0.036 | - |
356
+ | 6.3376 | 10400 | 0.0524 | - |
357
+ | 6.3681 | 10450 | 0.0927 | - |
358
+ | 6.3985 | 10500 | 0.0934 | - |
359
+ | 6.4290 | 10550 | 0.0788 | - |
360
+ | 6.4595 | 10600 | 0.0842 | - |
361
+ | 6.4899 | 10650 | 0.0703 | - |
362
+ | 6.5204 | 10700 | 0.0684 | - |
363
+ | 6.5509 | 10750 | 0.0759 | - |
364
+ | 6.5814 | 10800 | 0.0271 | - |
365
+ | 6.6118 | 10850 | 0.0391 | - |
366
+ | 6.6423 | 10900 | 0.0895 | - |
367
+ | 6.6728 | 10950 | 0.054 | - |
368
+ | 6.7032 | 11000 | 0.0987 | - |
369
+ | 6.7337 | 11050 | 0.0577 | - |
370
+ | 6.7642 | 11100 | 0.0822 | - |
371
+ | 6.7946 | 11150 | 0.0986 | - |
372
+ | 6.8251 | 11200 | 0.0423 | - |
373
+ | 6.8556 | 11250 | 0.0672 | - |
374
+ | 6.8860 | 11300 | 0.0747 | - |
375
+ | 6.9165 | 11350 | 0.0873 | - |
376
+ | 6.9470 | 11400 | 0.106 | - |
377
+ | 6.9775 | 11450 | 0.0975 | - |
378
+ | 7.0079 | 11500 | 0.0957 | - |
379
+ | 7.0384 | 11550 | 0.0487 | - |
380
+ | 7.0689 | 11600 | 0.0698 | - |
381
+ | 7.0993 | 11650 | 0.0317 | - |
382
+ | 7.1298 | 11700 | 0.0732 | - |
383
+ | 7.1603 | 11750 | 0.1114 | - |
384
+ | 7.1907 | 11800 | 0.0689 | - |
385
+ | 7.2212 | 11850 | 0.1211 | - |
386
+ | 7.2517 | 11900 | 0.0753 | - |
387
+ | 7.2821 | 11950 | 0.062 | - |
388
+ | 7.3126 | 12000 | 0.075 | - |
389
+ | 7.3431 | 12050 | 0.0494 | - |
390
+ | 7.3736 | 12100 | 0.0724 | - |
391
+ | 7.4040 | 12150 | 0.0605 | - |
392
+ | 7.4345 | 12200 | 0.0508 | - |
393
+ | 7.4650 | 12250 | 0.0828 | - |
394
+ | 7.4954 | 12300 | 0.0512 | - |
395
+ | 7.5259 | 12350 | 0.1291 | - |
396
+ | 7.5564 | 12400 | 0.0459 | - |
397
+ | 7.5868 | 12450 | 0.0869 | - |
398
+ | 7.6173 | 12500 | 0.0379 | - |
399
+ | 7.6478 | 12550 | 0.1878 | - |
400
+ | 7.6782 | 12600 | 0.0824 | - |
401
+ | 7.7087 | 12650 | 0.0945 | - |
402
+ | 7.7392 | 12700 | 0.0763 | - |
403
+ | 7.7697 | 12750 | 0.0602 | - |
404
+ | 7.8001 | 12800 | 0.0342 | - |
405
+ | 7.8306 | 12850 | 0.0746 | - |
406
+ | 7.8611 | 12900 | 0.065 | - |
407
+ | 7.8915 | 12950 | 0.0749 | - |
408
+ | 7.9220 | 13000 | 0.0618 | - |
409
+ | 7.9525 | 13050 | 0.0567 | - |
410
+ | 7.9829 | 13100 | 0.069 | - |
411
+ | 8.0134 | 13150 | 0.0487 | - |
412
+ | 8.0439 | 13200 | 0.0578 | - |
413
+ | 8.0743 | 13250 | 0.0876 | - |
414
+ | 8.1048 | 13300 | 0.0942 | - |
415
+ | 8.1353 | 13350 | 0.0774 | - |
416
+ | 8.1658 | 13400 | 0.0557 | - |
417
+ | 8.1962 | 13450 | 0.0872 | - |
418
+ | 8.2267 | 13500 | 0.0652 | - |
419
+ | 8.2572 | 13550 | 0.088 | - |
420
+ | 8.2876 | 13600 | 0.05 | - |
421
+ | 8.3181 | 13650 | 0.0572 | - |
422
+ | 8.3486 | 13700 | 0.053 | - |
423
+ | 8.3790 | 13750 | 0.0745 | - |
424
+ | 8.4095 | 13800 | 0.1119 | - |
425
+ | 8.4400 | 13850 | 0.0909 | - |
426
+ | 8.4704 | 13900 | 0.0374 | - |
427
+ | 8.5009 | 13950 | 0.0515 | - |
428
+ | 8.5314 | 14000 | 0.0827 | - |
429
+ | 8.5619 | 14050 | 0.0925 | - |
430
+ | 8.5923 | 14100 | 0.0793 | - |
431
+ | 8.6228 | 14150 | 0.1123 | - |
432
+ | 8.6533 | 14200 | 0.0387 | - |
433
+ | 8.6837 | 14250 | 0.0898 | - |
434
+ | 8.7142 | 14300 | 0.0627 | - |
435
+ | 8.7447 | 14350 | 0.0863 | - |
436
+ | 8.7751 | 14400 | 0.1257 | - |
437
+ | 8.8056 | 14450 | 0.0553 | - |
438
+ | 8.8361 | 14500 | 0.0664 | - |
439
+ | 8.8665 | 14550 | 0.0641 | - |
440
+ | 8.8970 | 14600 | 0.0577 | - |
441
+ | 8.9275 | 14650 | 0.0672 | - |
442
+ | 8.9580 | 14700 | 0.0776 | - |
443
+ | 8.9884 | 14750 | 0.0951 | - |
444
+ | 9.0189 | 14800 | 0.0721 | - |
445
+ | 9.0494 | 14850 | 0.0609 | - |
446
+ | 9.0798 | 14900 | 0.0821 | - |
447
+ | 9.1103 | 14950 | 0.0477 | - |
448
+ | 9.1408 | 15000 | 0.0974 | - |
449
+ | 9.1712 | 15050 | 0.0534 | - |
450
+ | 9.2017 | 15100 | 0.0673 | - |
451
+ | 9.2322 | 15150 | 0.0549 | - |
452
+ | 9.2626 | 15200 | 0.0833 | - |
453
+ | 9.2931 | 15250 | 0.0957 | - |
454
+ | 9.3236 | 15300 | 0.0601 | - |
455
+ | 9.3541 | 15350 | 0.0702 | - |
456
+ | 9.3845 | 15400 | 0.0852 | - |
457
+ | 9.4150 | 15450 | 0.0576 | - |
458
+ | 9.4455 | 15500 | 0.1006 | - |
459
+ | 9.4759 | 15550 | 0.0697 | - |
460
+ | 9.5064 | 15600 | 0.0778 | - |
461
+ | 9.5369 | 15650 | 0.0778 | - |
462
+ | 9.5673 | 15700 | 0.0844 | - |
463
+ | 9.5978 | 15750 | 0.0724 | - |
464
+ | 9.6283 | 15800 | 0.0988 | - |
465
+ | 9.6587 | 15850 | 0.0699 | - |
466
+ | 9.6892 | 15900 | 0.0772 | - |
467
+ | 9.7197 | 15950 | 0.0757 | - |
468
+ | 9.7502 | 16000 | 0.0671 | - |
469
+ | 9.7806 | 16050 | 0.1057 | - |
470
+ | 9.8111 | 16100 | 0.075 | - |
471
+ | 9.8416 | 16150 | 0.0475 | - |
472
+ | 9.8720 | 16200 | 0.0572 | - |
473
+ | 9.9025 | 16250 | 0.1176 | - |
474
+ | 9.9330 | 16300 | 0.0552 | - |
475
+ | 9.9634 | 16350 | 0.1032 | - |
476
+ | 9.9939 | 16400 | 0.0935 | - |
477
+ | 0.0006 | 1 | 0.0579 | - |
478
+ | 0.0305 | 50 | 0.0231 | - |
479
+ | 0.0609 | 100 | 0.0598 | - |
480
+ | 0.0914 | 150 | 0.0541 | - |
481
+ | 0.1219 | 200 | 0.0534 | - |
482
+ | 0.1523 | 250 | 0.048 | - |
483
+ | 0.1828 | 300 | 0.0912 | - |
484
+ | 0.2133 | 350 | 0.0447 | - |
485
+ | 0.2438 | 400 | 0.0442 | - |
486
+ | 0.2742 | 450 | 0.0579 | - |
487
+ | 0.0006 | 1 | 0.0585 | - |
488
+ | 0.0305 | 50 | 0.0204 | - |
489
+ | 0.0609 | 100 | 0.0653 | - |
490
+ | 0.0914 | 150 | 0.0599 | - |
491
+ | 0.1219 | 200 | 0.0577 | - |
492
+ | 0.1523 | 250 | 0.0468 | - |
493
+ | 0.1828 | 300 | 0.0911 | - |
494
+ | 0.2133 | 350 | 0.0423 | - |
495
+ | 0.2438 | 400 | 0.0405 | - |
496
+ | 0.2742 | 450 | 0.0561 | - |
497
+ | 0.3047 | 500 | 0.0925 | - |
498
+ | 0.3352 | 550 | 0.0771 | - |
499
+ | 0.3656 | 600 | 0.0718 | - |
500
+ | 0.3961 | 650 | 0.0708 | - |
501
+ | 0.4266 | 700 | 0.0673 | - |
502
+ | 0.4570 | 750 | 0.1501 | - |
503
+ | 0.4875 | 800 | 0.0849 | - |
504
+ | 0.5180 | 850 | 0.1132 | - |
505
+ | 0.5484 | 900 | 0.0865 | - |
506
+ | 0.5789 | 950 | 0.0527 | - |
507
+ | 0.6094 | 1000 | 0.0552 | - |
508
+ | 0.6399 | 1050 | 0.0656 | - |
509
+ | 0.6703 | 1100 | 0.0648 | - |
510
+ | 0.7008 | 1150 | 0.0884 | - |
511
+ | 0.7313 | 1200 | 0.0803 | - |
512
+ | 0.7617 | 1250 | 0.083 | - |
513
+ | 0.7922 | 1300 | 0.0863 | - |
514
+ | 0.8227 | 1350 | 0.0731 | - |
515
+ | 0.8531 | 1400 | 0.0504 | - |
516
+ | 0.8836 | 1450 | 0.1039 | - |
517
+ | 0.9141 | 1500 | 0.0817 | - |
518
+ | 0.9445 | 1550 | 0.0655 | - |
519
+ | 0.9750 | 1600 | 0.0987 | - |
520
+ | 1.0055 | 1650 | 0.0905 | - |
521
+ | 1.0360 | 1700 | 0.088 | - |
522
+ | 1.0664 | 1750 | 0.0767 | - |
523
+ | 1.0969 | 1800 | 0.0574 | - |
524
+ | 1.1274 | 1850 | 0.0741 | - |
525
+ | 1.1578 | 1900 | 0.0529 | - |
526
+ | 1.1883 | 1950 | 0.0758 | - |
527
+ | 1.2188 | 2000 | 0.1253 | - |
528
+ | 1.2492 | 2050 | 0.1129 | - |
529
+ | 1.2797 | 2100 | 0.0852 | - |
530
+ | 1.3102 | 2150 | 0.0475 | - |
531
+ | 1.3406 | 2200 | 0.063 | - |
532
+ | 1.3711 | 2250 | 0.0893 | - |
533
+ | 1.4016 | 2300 | 0.0494 | - |
534
+ | 1.4321 | 2350 | 0.1083 | - |
535
+ | 1.4625 | 2400 | 0.0468 | - |
536
+ | 1.4930 | 2450 | 0.0902 | - |
537
+ | 1.5235 | 2500 | 0.0607 | - |
538
+ | 1.5539 | 2550 | 0.0571 | - |
539
+ | 1.5844 | 2600 | 0.0395 | - |
540
+ | 1.6149 | 2650 | 0.1184 | - |
541
+ | 1.6453 | 2700 | 0.0735 | - |
542
+ | 1.6758 | 2750 | 0.06 | - |
543
+ | 1.7063 | 2800 | 0.0646 | - |
544
+ | 1.7367 | 2850 | 0.1055 | - |
545
+ | 1.7672 | 2900 | 0.0592 | - |
546
+ | 1.7977 | 2950 | 0.0522 | - |
547
+ | 1.8282 | 3000 | 0.1025 | - |
548
+ | 1.8586 | 3050 | 0.0615 | - |
549
+ | 1.8891 | 3100 | 0.1491 | - |
550
+ | 1.9196 | 3150 | 0.0796 | - |
551
+ | 1.9500 | 3200 | 0.0768 | - |
552
+ | 1.9805 | 3250 | 0.0601 | - |
553
+ | 2.0110 | 3300 | 0.0543 | - |
554
+ | 2.0414 | 3350 | 0.1128 | - |
555
+ | 2.0719 | 3400 | 0.06 | - |
556
+ | 2.1024 | 3450 | 0.0994 | - |
557
+ | 2.1328 | 3500 | 0.1018 | - |
558
+ | 2.1633 | 3550 | 0.0915 | - |
559
+ | 2.1938 | 3600 | 0.0626 | - |
560
+ | 2.2243 | 3650 | 0.0454 | - |
561
+ | 2.2547 | 3700 | 0.0915 | - |
562
+ | 2.2852 | 3750 | 0.0334 | - |
563
+ | 2.3157 | 3800 | 0.0827 | - |
564
+ | 2.3461 | 3850 | 0.0709 | - |
565
+ | 2.3766 | 3900 | 0.0806 | - |
566
+ | 2.4071 | 3950 | 0.055 | - |
567
+ | 2.4375 | 4000 | 0.0571 | - |
568
+ | 2.4680 | 4050 | 0.1002 | - |
569
+ | 2.4985 | 4100 | 0.0492 | - |
570
+ | 2.5289 | 4150 | 0.1322 | - |
571
+ | 2.5594 | 4200 | 0.0961 | - |
572
+ | 2.5899 | 4250 | 0.0788 | - |
573
+ | 2.6204 | 4300 | 0.0243 | - |
574
+ | 2.6508 | 4350 | 0.0406 | - |
575
+ | 2.6813 | 4400 | 0.0786 | - |
576
+ | 2.7118 | 4450 | 0.0852 | - |
577
+ | 2.7422 | 4500 | 0.0789 | - |
578
+ | 2.7727 | 4550 | 0.0787 | - |
579
+ | 2.8032 | 4600 | 0.1152 | - |
580
+ | 2.8336 | 4650 | 0.0992 | - |
581
+ | 2.8641 | 4700 | 0.0599 | - |
582
+ | 2.8946 | 4750 | 0.0496 | - |
583
+ | 2.9250 | 4800 | 0.0444 | - |
584
+ | 2.9555 | 4850 | 0.0898 | - |
585
+ | 2.9860 | 4900 | 0.0422 | - |
586
+ | 3.0165 | 4950 | 0.0328 | - |
587
+ | 3.0469 | 5000 | 0.0584 | - |
588
+ | 3.0774 | 5050 | 0.052 | - |
589
+ | 3.1079 | 5100 | 0.0485 | - |
590
+ | 3.1383 | 5150 | 0.0542 | - |
591
+ | 3.1688 | 5200 | 0.0854 | - |
592
+ | 3.1993 | 5250 | 0.048 | - |
593
+ | 3.2297 | 5300 | 0.0417 | - |
594
+ | 3.2602 | 5350 | 0.0497 | - |
595
+ | 3.2907 | 5400 | 0.0809 | - |
596
+ | 3.3211 | 5450 | 0.074 | - |
597
+ | 3.3516 | 5500 | 0.0761 | - |
598
+ | 3.3821 | 5550 | 0.0768 | - |
599
+ | 3.4126 | 5600 | 0.0954 | - |
600
+ | 3.4430 | 5650 | 0.0955 | - |
601
+ | 3.4735 | 5700 | 0.0906 | - |
602
+ | 3.5040 | 5750 | 0.0916 | - |
603
+ | 3.5344 | 5800 | 0.0915 | - |
604
+ | 3.5649 | 5850 | 0.107 | - |
605
+ | 3.5954 | 5900 | 0.0327 | - |
606
+ | 3.6258 | 5950 | 0.0534 | - |
607
+ | 3.6563 | 6000 | 0.059 | - |
608
+ | 3.6868 | 6050 | 0.0806 | - |
609
+ | 3.7172 | 6100 | 0.0941 | - |
610
+ | 3.7477 | 6150 | 0.1368 | - |
611
+ | 3.7782 | 6200 | 0.0848 | - |
612
+ | 3.8087 | 6250 | 0.0625 | - |
613
+ | 3.8391 | 6300 | 0.103 | - |
614
+ | 3.8696 | 6350 | 0.0307 | - |
615
+ | 3.9001 | 6400 | 0.0716 | - |
616
+ | 3.9305 | 6450 | 0.0518 | - |
617
+ | 3.9610 | 6500 | 0.0645 | - |
618
+ | 3.9915 | 6550 | 0.0417 | - |
619
+ | 4.0219 | 6600 | 0.0588 | - |
620
+ | 4.0524 | 6650 | 0.047 | - |
621
+ | 4.0829 | 6700 | 0.0951 | - |
622
+ | 4.1133 | 6750 | 0.0689 | - |
623
+ | 4.1438 | 6800 | 0.0731 | - |
624
+ | 4.1743 | 6850 | 0.0785 | - |
625
+ | 4.2048 | 6900 | 0.0411 | - |
626
+ | 4.2352 | 6950 | 0.0568 | - |
627
+ | 4.2657 | 7000 | 0.0688 | - |
628
+ | 4.2962 | 7050 | 0.066 | - |
629
+ | 4.3266 | 7100 | 0.0313 | - |
630
+ | 4.3571 | 7150 | 0.1127 | - |
631
+ | 4.3876 | 7200 | 0.1347 | - |
632
+ | 4.4180 | 7250 | 0.0685 | - |
633
+ | 4.4485 | 7300 | 0.0693 | - |
634
+ | 4.4790 | 7350 | 0.053 | - |
635
+ | 4.5094 | 7400 | 0.1353 | - |
636
+ | 4.5399 | 7450 | 0.1057 | - |
637
+ | 4.5704 | 7500 | 0.0467 | - |
638
+ | 4.6009 | 7550 | 0.1059 | - |
639
+ | 4.6313 | 7600 | 0.0791 | - |
640
+ | 4.6618 | 7650 | 0.0928 | - |
641
+ | 4.6923 | 7700 | 0.0989 | - |
642
+ | 4.7227 | 7750 | 0.0619 | - |
643
+ | 4.7532 | 7800 | 0.0572 | - |
644
+ | 4.7837 | 7850 | 0.06 | - |
645
+ | 4.8141 | 7900 | 0.0711 | - |
646
+ | 4.8446 | 7950 | 0.0595 | - |
647
+ | 4.8751 | 8000 | 0.0675 | - |
648
+ | 4.9055 | 8050 | 0.0487 | - |
649
+ | 4.9360 | 8100 | 0.0569 | - |
650
+ | 4.9665 | 8150 | 0.0637 | - |
651
+ | 4.9970 | 8200 | 0.0634 | - |
652
+ | 5.0274 | 8250 | 0.093 | - |
653
+ | 5.0579 | 8300 | 0.1107 | - |
654
+ | 5.0884 | 8350 | 0.0883 | - |
655
+ | 5.1188 | 8400 | 0.051 | - |
656
+ | 5.1493 | 8450 | 0.1034 | - |
657
+ | 5.1798 | 8500 | 0.0832 | - |
658
+ | 5.2102 | 8550 | 0.0463 | - |
659
+ | 5.2407 | 8600 | 0.0596 | - |
660
+ | 5.2712 | 8650 | 0.078 | - |
661
+ | 5.3016 | 8700 | 0.0686 | - |
662
+ | 5.3321 | 8750 | 0.1053 | - |
663
+ | 5.3626 | 8800 | 0.0684 | - |
664
+ | 5.3931 | 8850 | 0.0684 | - |
665
+ | 5.4235 | 8900 | 0.092 | - |
666
+ | 5.4540 | 8950 | 0.088 | - |
667
+ | 5.4845 | 9000 | 0.0503 | - |
668
+ | 5.5149 | 9050 | 0.0752 | - |
669
+ | 5.5454 | 9100 | 0.0975 | - |
670
+ | 5.5759 | 9150 | 0.1306 | - |
671
+ | 5.6063 | 9200 | 0.1038 | - |
672
+ | 5.6368 | 9250 | 0.0573 | - |
673
+ | 5.6673 | 9300 | 0.0584 | - |
674
+ | 5.6977 | 9350 | 0.0309 | - |
675
+ | 5.7282 | 9400 | 0.1232 | - |
676
+ | 5.7587 | 9450 | 0.0991 | - |
677
+ | 5.7892 | 9500 | 0.1111 | - |
678
+ | 5.8196 | 9550 | 0.0845 | - |
679
+ | 5.8501 | 9600 | 0.0587 | - |
680
+ | 5.8806 | 9650 | 0.0589 | - |
681
+ | 5.9110 | 9700 | 0.0751 | - |
682
+ | 5.9415 | 9750 | 0.0929 | - |
683
+ | 5.9720 | 9800 | 0.0613 | - |
684
+ | 6.0024 | 9850 | 0.0578 | - |
685
+ | 6.0329 | 9900 | 0.0499 | - |
686
+ | 6.0634 | 9950 | 0.0435 | - |
687
+ | 6.0938 | 10000 | 0.0547 | - |
688
+ | 6.1243 | 10050 | 0.0549 | - |
689
+ | 6.1548 | 10100 | 0.0872 | - |
690
+ | 6.1853 | 10150 | 0.0509 | - |
691
+ | 6.2157 | 10200 | 0.0913 | - |
692
+ | 6.2462 | 10250 | 0.0581 | - |
693
+ | 6.2767 | 10300 | 0.0942 | - |
694
+ | 6.3071 | 10350 | 0.0273 | - |
695
+ | 6.3376 | 10400 | 0.0426 | - |
696
+ | 6.3681 | 10450 | 0.0825 | - |
697
+ | 6.3985 | 10500 | 0.0713 | - |
698
+ | 6.4290 | 10550 | 0.0698 | - |
699
+ | 6.4595 | 10600 | 0.0679 | - |
700
+ | 6.4899 | 10650 | 0.0631 | - |
701
+ | 6.5204 | 10700 | 0.0489 | - |
702
+ | 6.5509 | 10750 | 0.0599 | - |
703
+ | 6.5814 | 10800 | 0.033 | - |
704
+ | 6.6118 | 10850 | 0.0401 | - |
705
+ | 6.6423 | 10900 | 0.0782 | - |
706
+ | 6.6728 | 10950 | 0.0512 | - |
707
+ | 6.7032 | 11000 | 0.0939 | - |
708
+ | 6.7337 | 11050 | 0.0523 | - |
709
+ | 6.7642 | 11100 | 0.0784 | - |
710
+ | 6.7946 | 11150 | 0.0898 | - |
711
+ | 6.8251 | 11200 | 0.042 | - |
712
+ | 6.8556 | 11250 | 0.0616 | - |
713
+ | 6.8860 | 11300 | 0.0667 | - |
714
+ | 6.9165 | 11350 | 0.0807 | - |
715
+ | 6.9470 | 11400 | 0.1054 | - |
716
+ | 6.9775 | 11450 | 0.0961 | - |
717
+ | 7.0079 | 11500 | 0.0896 | - |
718
+ | 7.0384 | 11550 | 0.0463 | - |
719
+ | 7.0689 | 11600 | 0.065 | - |
720
+ | 7.0993 | 11650 | 0.0318 | - |
721
+ | 7.1298 | 11700 | 0.0692 | - |
722
+ | 7.1603 | 11750 | 0.1055 | - |
723
+ | 7.1907 | 11800 | 0.0619 | - |
724
+ | 7.2212 | 11850 | 0.1234 | - |
725
+ | 7.2517 | 11900 | 0.0698 | - |
726
+ | 7.2821 | 11950 | 0.0526 | - |
727
+ | 7.3126 | 12000 | 0.0695 | - |
728
+ | 7.3431 | 12050 | 0.051 | - |
729
+ | 7.3736 | 12100 | 0.0759 | - |
730
+ | 7.4040 | 12150 | 0.062 | - |
731
+ | 7.4345 | 12200 | 0.0509 | - |
732
+ | 7.4650 | 12250 | 0.0874 | - |
733
+ | 7.4954 | 12300 | 0.0534 | - |
734
+ | 7.5259 | 12350 | 0.1089 | - |
735
+ | 7.5564 | 12400 | 0.0516 | - |
736
+ | 7.5868 | 12450 | 0.0755 | - |
737
+ | 7.6173 | 12500 | 0.0295 | - |
738
+ | 7.6478 | 12550 | 0.1767 | - |
739
+ | 7.6782 | 12600 | 0.0744 | - |
740
+ | 7.7087 | 12650 | 0.0875 | - |
741
+ | 7.7392 | 12700 | 0.075 | - |
742
+ | 7.7697 | 12750 | 0.0583 | - |
743
+ | 7.8001 | 12800 | 0.0353 | - |
744
+ | 7.8306 | 12850 | 0.0638 | - |
745
+ | 7.8611 | 12900 | 0.045 | - |
746
+ | 7.8915 | 12950 | 0.0647 | - |
747
+ | 7.9220 | 13000 | 0.0593 | - |
748
+ | 7.9525 | 13050 | 0.0515 | - |
749
+ | 7.9829 | 13100 | 0.0705 | - |
750
+ | 8.0134 | 13150 | 0.0521 | - |
751
+ | 8.0439 | 13200 | 0.059 | - |
752
+ | 8.0743 | 13250 | 0.0758 | - |
753
+ | 8.1048 | 13300 | 0.0922 | - |
754
+ | 8.1353 | 13350 | 0.0859 | - |
755
+ | 8.1658 | 13400 | 0.0526 | - |
756
+ | 8.1962 | 13450 | 0.0892 | - |
757
+ | 8.2267 | 13500 | 0.0665 | - |
758
+ | 8.2572 | 13550 | 0.0711 | - |
759
+ | 8.2876 | 13600 | 0.0535 | - |
760
+ | 8.3181 | 13650 | 0.055 | - |
761
+ | 8.3486 | 13700 | 0.0516 | - |
762
+ | 8.3790 | 13750 | 0.0683 | - |
763
+ | 8.4095 | 13800 | 0.0959 | - |
764
+ | 8.4400 | 13850 | 0.0901 | - |
765
+ | 8.4704 | 13900 | 0.041 | - |
766
+ | 8.5009 | 13950 | 0.0464 | - |
767
+ | 8.5314 | 14000 | 0.0726 | - |
768
+ | 8.5619 | 14050 | 0.0959 | - |
769
+ | 8.5923 | 14100 | 0.0739 | - |
770
+ | 8.6228 | 14150 | 0.1083 | - |
771
+ | 8.6533 | 14200 | 0.0374 | - |
772
+ | 8.6837 | 14250 | 0.0767 | - |
773
+ | 8.7142 | 14300 | 0.0626 | - |
774
+ | 8.7447 | 14350 | 0.0847 | - |
775
+ | 8.7751 | 14400 | 0.1211 | - |
776
+ | 8.8056 | 14450 | 0.0457 | - |
777
+ | 8.8361 | 14500 | 0.0705 | - |
778
+ | 8.8665 | 14550 | 0.06 | - |
779
+ | 8.8970 | 14600 | 0.052 | - |
780
+ | 8.9275 | 14650 | 0.0677 | - |
781
+ | 8.9580 | 14700 | 0.0747 | - |
782
+ | 8.9884 | 14750 | 0.0877 | - |
783
+ | 9.0189 | 14800 | 0.0791 | - |
784
+ | 9.0494 | 14850 | 0.0573 | - |
785
+ | 9.0798 | 14900 | 0.0786 | - |
786
+ | 9.1103 | 14950 | 0.0376 | - |
787
+ | 9.1408 | 15000 | 0.0964 | - |
788
+ | 9.1712 | 15050 | 0.0542 | - |
789
+ | 9.2017 | 15100 | 0.0568 | - |
790
+ | 9.2322 | 15150 | 0.0583 | - |
791
+ | 9.2626 | 15200 | 0.0861 | - |
792
+ | 9.2931 | 15250 | 0.0994 | - |
793
+ | 9.3236 | 15300 | 0.0614 | - |
794
+ | 9.3541 | 15350 | 0.0689 | - |
795
+ | 9.3845 | 15400 | 0.0803 | - |
796
+ | 9.4150 | 15450 | 0.0599 | - |
797
+ | 9.4455 | 15500 | 0.0952 | - |
798
+ | 9.4759 | 15550 | 0.0597 | - |
799
+ | 9.5064 | 15600 | 0.0762 | - |
800
+ | 9.5369 | 15650 | 0.0718 | - |
801
+ | 9.5673 | 15700 | 0.0794 | - |
802
+ | 9.5978 | 15750 | 0.0721 | - |
803
+ | 9.6283 | 15800 | 0.0966 | - |
804
+ | 9.6587 | 15850 | 0.0604 | - |
805
+ | 9.6892 | 15900 | 0.0764 | - |
806
+ | 9.7197 | 15950 | 0.0707 | - |
807
+ | 9.7502 | 16000 | 0.0724 | - |
808
+ | 9.7806 | 16050 | 0.1072 | - |
809
+ | 9.8111 | 16100 | 0.0728 | - |
810
+ | 9.8416 | 16150 | 0.0516 | - |
811
+ | 9.8720 | 16200 | 0.0519 | - |
812
+ | 9.9025 | 16250 | 0.1077 | - |
813
+ | 9.9330 | 16300 | 0.0539 | - |
814
+ | 9.9634 | 16350 | 0.095 | - |
815
+ | 9.9939 | 16400 | 0.0957 | - |
816
+ | 0.0005 | 1 | 0.0632 | - |
817
+ | 0.0244 | 50 | 0.058 | - |
818
+ | 0.0488 | 100 | 0.0531 | - |
819
+ | 0.0731 | 150 | 0.0769 | - |
820
+ | 0.0975 | 200 | 0.0445 | - |
821
+ | 0.1219 | 250 | 0.0852 | - |
822
+ | 0.1463 | 300 | 0.058 | - |
823
+ | 0.1706 | 350 | 0.0611 | - |
824
+ | 0.1950 | 400 | 0.0772 | - |
825
+ | 0.2194 | 450 | 0.0806 | - |
826
+ | 0.2438 | 500 | 0.0686 | - |
827
+ | 0.2682 | 550 | 0.0591 | - |
828
+ | 0.2925 | 600 | 0.0838 | - |
829
+ | 0.3169 | 650 | 0.0862 | - |
830
+ | 0.3413 | 700 | 0.0641 | - |
831
+ | 0.3657 | 750 | 0.0628 | - |
832
+ | 0.3901 | 800 | 0.0725 | - |
833
+ | 0.4144 | 850 | 0.0756 | - |
834
+ | 0.4388 | 900 | 0.0686 | - |
835
+ | 0.4632 | 950 | 0.0789 | - |
836
+ | 0.4876 | 1000 | 0.1058 | - |
837
+ | 0.5119 | 1050 | 0.0682 | - |
838
+ | 0.5363 | 1100 | 0.0657 | - |
839
+ | 0.5607 | 1150 | 0.0531 | - |
840
+ | 0.5851 | 1200 | 0.0456 | - |
841
+ | 0.6095 | 1250 | 0.06 | - |
842
+ | 0.6338 | 1300 | 0.0567 | - |
843
+ | 0.6582 | 1350 | 0.0599 | - |
844
+ | 0.6826 | 1400 | 0.0743 | - |
845
+ | 0.7070 | 1450 | 0.0512 | - |
846
+ | 0.7314 | 1500 | 0.0805 | - |
847
+ | 0.7557 | 1550 | 0.1057 | - |
848
+ | 0.7801 | 1600 | 0.0714 | - |
849
+ | 0.8045 | 1650 | 0.0415 | - |
850
+ | 0.8289 | 1700 | 0.0531 | - |
851
+ | 0.8532 | 1750 | 0.0786 | - |
852
+ | 0.8776 | 1800 | 0.0867 | - |
853
+ | 0.9020 | 1850 | 0.0538 | - |
854
+ | 0.9264 | 1900 | 0.0734 | - |
855
+ | 0.9508 | 1950 | 0.0854 | - |
856
+ | 0.9751 | 2000 | 0.0584 | - |
857
+ | 0.9995 | 2050 | 0.0459 | - |
858
+ | 1.0239 | 2100 | 0.071 | - |
859
+ | 1.0483 | 2150 | 0.0716 | - |
860
+ | 1.0726 | 2200 | 0.0768 | - |
861
+ | 1.0970 | 2250 | 0.0778 | - |
862
+ | 1.1214 | 2300 | 0.1028 | - |
863
+ | 1.1458 | 2350 | 0.0598 | - |
864
+ | 1.1702 | 2400 | 0.0462 | - |
865
+ | 1.1945 | 2450 | 0.0494 | - |
866
+ | 1.2189 | 2500 | 0.0554 | - |
867
+ | 1.2433 | 2550 | 0.0645 | - |
868
+ | 1.2677 | 2600 | 0.0533 | - |
869
+ | 1.2921 | 2650 | 0.0404 | - |
870
+ | 1.3164 | 2700 | 0.0837 | - |
871
+ | 1.3408 | 2750 | 0.0832 | - |
872
+ | 1.3652 | 2800 | 0.0946 | - |
873
+ | 1.3896 | 2850 | 0.0807 | - |
874
+ | 1.4139 | 2900 | 0.0695 | - |
875
+ | 1.4383 | 2950 | 0.0436 | - |
876
+ | 1.4627 | 3000 | 0.0605 | - |
877
+ | 1.4871 | 3050 | 0.0918 | - |
878
+ | 1.5115 | 3100 | 0.0755 | - |
879
+ | 1.5358 | 3150 | 0.0745 | - |
880
+ | 1.5602 | 3200 | 0.0429 | - |
881
+ | 1.5846 | 3250 | 0.0651 | - |
882
+ | 1.6090 | 3300 | 0.0567 | - |
883
+ | 1.6333 | 3350 | 0.0679 | - |
884
+ | 1.6577 | 3400 | 0.0904 | - |
885
+ | 1.6821 | 3450 | 0.0671 | - |
886
+ | 1.7065 | 3500 | 0.0626 | - |
887
+ | 1.7309 | 3550 | 0.0439 | - |
888
+ | 1.7552 | 3600 | 0.1035 | - |
889
+ | 1.7796 | 3650 | 0.0818 | - |
890
+ | 1.8040 | 3700 | 0.1284 | - |
891
+ | 1.8284 | 3750 | 0.058 | - |
892
+ | 1.8528 | 3800 | 0.0608 | - |
893
+ | 1.8771 | 3850 | 0.0858 | - |
894
+ | 1.9015 | 3900 | 0.0611 | - |
895
+ | 1.9259 | 3950 | 0.0701 | - |
896
+ | 1.9503 | 4000 | 0.0882 | - |
897
+ | 1.9746 | 4050 | 0.0568 | - |
898
+ | 1.9990 | 4100 | 0.0591 | - |
899
+ | 2.0234 | 4150 | 0.0765 | - |
900
+ | 2.0478 | 4200 | 0.0697 | - |
901
+ | 2.0722 | 4250 | 0.0714 | - |
902
+ | 2.0965 | 4300 | 0.0438 | - |
903
+ | 2.1209 | 4350 | 0.0661 | - |
904
+ | 2.1453 | 4400 | 0.0626 | - |
905
+ | 2.1697 | 4450 | 0.0666 | - |
906
+ | 2.1941 | 4500 | 0.0583 | - |
907
+ | 2.2184 | 4550 | 0.088 | - |
908
+ | 2.2428 | 4600 | 0.0768 | - |
909
+ | 2.2672 | 4650 | 0.0528 | - |
910
+ | 2.2916 | 4700 | 0.0869 | - |
911
+ | 2.3159 | 4750 | 0.1001 | - |
912
+ | 2.3403 | 4800 | 0.0731 | - |
913
+ | 2.3647 | 4850 | 0.0858 | - |
914
+ | 2.3891 | 4900 | 0.0611 | - |
915
+ | 2.4135 | 4950 | 0.058 | - |
916
+ | 2.4378 | 5000 | 0.0725 | - |
917
+ | 2.4622 | 5050 | 0.0893 | - |
918
+ | 2.4866 | 5100 | 0.0649 | - |
919
+ | 2.5110 | 5150 | 0.0561 | - |
920
+ | 2.5353 | 5200 | 0.0569 | - |
921
+ | 2.5597 | 5250 | 0.0375 | - |
922
+ | 2.5841 | 5300 | 0.0925 | - |
923
+ | 2.6085 | 5350 | 0.0842 | - |
924
+ | 2.6329 | 5400 | 0.083 | - |
925
+ | 2.6572 | 5450 | 0.0713 | - |
926
+ | 2.6816 | 5500 | 0.1082 | - |
927
+ | 2.7060 | 5550 | 0.0718 | - |
928
+ | 2.7304 | 5600 | 0.0755 | - |
929
+ | 2.7548 | 5650 | 0.0863 | - |
930
+ | 2.7791 | 5700 | 0.081 | - |
931
+ | 2.8035 | 5750 | 0.0732 | - |
932
+ | 2.8279 | 5800 | 0.0769 | - |
933
+ | 2.8523 | 5850 | 0.0846 | - |
934
+ | 2.8766 | 5900 | 0.0794 | - |
935
+ | 2.9010 | 5950 | 0.0518 | - |
936
+ | 2.9254 | 6000 | 0.0495 | - |
937
+ | 2.9498 | 6050 | 0.0696 | - |
938
+ | 2.9742 | 6100 | 0.081 | - |
939
+ | 2.9985 | 6150 | 0.0505 | - |
940
+ | 3.0229 | 6200 | 0.0703 | - |
941
+ | 3.0473 | 6250 | 0.0738 | - |
942
+ | 3.0717 | 6300 | 0.07 | - |
943
+ | 3.0961 | 6350 | 0.0663 | - |
944
+ | 3.1204 | 6400 | 0.069 | - |
945
+ | 3.1448 | 6450 | 0.0665 | - |
946
+ | 3.1692 | 6500 | 0.0409 | - |
947
+ | 3.1936 | 6550 | 0.075 | - |
948
+ | 3.2179 | 6600 | 0.0519 | - |
949
+ | 3.2423 | 6650 | 0.0836 | - |
950
+ | 3.2667 | 6700 | 0.0631 | - |
951
+ | 3.2911 | 6750 | 0.0926 | - |
952
+ | 3.3155 | 6800 | 0.0443 | - |
953
+ | 3.3398 | 6850 | 0.0587 | - |
954
+ | 3.3642 | 6900 | 0.0654 | - |
955
+ | 3.3886 | 6950 | 0.0776 | - |
956
+ | 3.4130 | 7000 | 0.0563 | - |
957
+ | 3.4373 | 7050 | 0.0501 | - |
958
+ | 3.4617 | 7100 | 0.0549 | - |
959
+ | 3.4861 | 7150 | 0.0497 | - |
960
+ | 3.5105 | 7200 | 0.0782 | - |
961
+ | 3.5349 | 7250 | 0.0734 | - |
962
+ | 3.5592 | 7300 | 0.0704 | - |
963
+ | 3.5836 | 7350 | 0.062 | - |
964
+ | 3.6080 | 7400 | 0.0698 | - |
965
+ | 3.6324 | 7450 | 0.09 | - |
966
+ | 3.6568 | 7500 | 0.0585 | - |
967
+ | 3.6811 | 7550 | 0.0649 | - |
968
+ | 3.7055 | 7600 | 0.0685 | - |
969
+ | 3.7299 | 7650 | 0.0671 | - |
970
+ | 3.7543 | 7700 | 0.0576 | - |
971
+ | 3.7786 | 7750 | 0.0378 | - |
972
+ | 3.8030 | 7800 | 0.0679 | - |
973
+ | 3.8274 | 7850 | 0.0665 | - |
974
+ | 3.8518 | 7900 | 0.0701 | - |
975
+ | 3.8762 | 7950 | 0.0943 | - |
976
+ | 3.9005 | 8000 | 0.1062 | - |
977
+ | 3.9249 | 8050 | 0.0725 | - |
978
+ | 3.9493 | 8100 | 0.0595 | - |
979
+ | 3.9737 | 8150 | 0.0738 | - |
980
+ | 3.9980 | 8200 | 0.0793 | - |
981
+ | 4.0224 | 8250 | 0.0851 | - |
982
+ | 4.0468 | 8300 | 0.121 | - |
983
+ | 4.0712 | 8350 | 0.0919 | - |
984
+ | 4.0956 | 8400 | 0.0629 | - |
985
+ | 4.1199 | 8450 | 0.0518 | - |
986
+ | 4.1443 | 8500 | 0.0595 | - |
987
+ | 4.1687 | 8550 | 0.0684 | - |
988
+ | 4.1931 | 8600 | 0.0497 | - |
989
+ | 4.2175 | 8650 | 0.0375 | - |
990
+ | 4.2418 | 8700 | 0.0819 | - |
991
+ | 4.2662 | 8750 | 0.0781 | - |
992
+ | 4.2906 | 8800 | 0.0515 | - |
993
+ | 4.3150 | 8850 | 0.0756 | - |
994
+ | 4.3393 | 8900 | 0.0547 | - |
995
+ | 4.3637 | 8950 | 0.0875 | - |
996
+ | 4.3881 | 9000 | 0.0571 | - |
997
+ | 4.4125 | 9050 | 0.046 | - |
998
+ | 4.4369 | 9100 | 0.067 | - |
999
+ | 4.4612 | 9150 | 0.0646 | - |
1000
+ | 4.4856 | 9200 | 0.0575 | - |
1001
+ | 4.5100 | 9250 | 0.1137 | - |
1002
+ | 4.5344 | 9300 | 0.0768 | - |
1003
+ | 4.5588 | 9350 | 0.0542 | - |
1004
+ | 4.5831 | 9400 | 0.0743 | - |
1005
+ | 4.6075 | 9450 | 0.072 | - |
1006
+ | 4.6319 | 9500 | 0.0606 | - |
1007
+ | 4.6563 | 9550 | 0.0777 | - |
1008
+ | 4.6806 | 9600 | 0.0435 | - |
1009
+ | 4.7050 | 9650 | 0.065 | - |
1010
+ | 4.7294 | 9700 | 0.0601 | - |
1011
+ | 4.7538 | 9750 | 0.0579 | - |
1012
+ | 4.7782 | 9800 | 0.0661 | - |
1013
+ | 4.8025 | 9850 | 0.0569 | - |
1014
+ | 4.8269 | 9900 | 0.0995 | - |
1015
+ | 4.8513 | 9950 | 0.056 | - |
1016
+ | 4.8757 | 10000 | 0.0705 | - |
1017
+ | 4.9000 | 10050 | 0.066 | - |
1018
+ | 4.9244 | 10100 | 0.0489 | - |
1019
+ | 4.9488 | 10150 | 0.0709 | - |
1020
+ | 4.9732 | 10200 | 0.0545 | - |
1021
+ | 4.9976 | 10250 | 0.0886 | - |
1022
+ | 5.0219 | 10300 | 0.0835 | - |
1023
+ | 5.0463 | 10350 | 0.0635 | - |
1024
+ | 5.0707 | 10400 | 0.066 | - |
1025
+ | 5.0951 | 10450 | 0.0678 | - |
1026
+ | 5.1195 | 10500 | 0.1006 | - |
1027
+ | 5.1438 | 10550 | 0.0526 | - |
1028
+ | 5.1682 | 10600 | 0.0691 | - |
1029
+ | 5.1926 | 10650 | 0.0833 | - |
1030
+ | 5.2170 | 10700 | 0.0512 | - |
1031
+ | 5.2413 | 10750 | 0.0469 | - |
1032
+ | 5.2657 | 10800 | 0.0837 | - |
1033
+ | 5.2901 | 10850 | 0.0646 | - |
1034
+ | 5.3145 | 10900 | 0.0843 | - |
1035
+ | 5.3389 | 10950 | 0.0627 | - |
1036
+ | 5.3632 | 11000 | 0.0503 | - |
1037
+ | 5.3876 | 11050 | 0.0499 | - |
1038
+ | 5.4120 | 11100 | 0.0823 | - |
1039
+ | 5.4364 | 11150 | 0.0759 | - |
1040
+ | 5.4608 | 11200 | 0.0436 | - |
1041
+ | 5.4851 | 11250 | 0.0864 | - |
1042
+ | 5.5095 | 11300 | 0.0792 | - |
1043
+ | 5.5339 | 11350 | 0.0876 | - |
1044
+ | 5.5583 | 11400 | 0.0535 | - |
1045
+ | 5.5826 | 11450 | 0.0543 | - |
1046
+ | 5.6070 | 11500 | 0.0549 | - |
1047
+ | 5.6314 | 11550 | 0.0564 | - |
1048
+ | 5.6558 | 11600 | 0.0454 | - |
1049
+ | 5.6802 | 11650 | 0.061 | - |
1050
+ | 5.7045 | 11700 | 0.0573 | - |
1051
+ | 5.7289 | 11750 | 0.0655 | - |
1052
+ | 5.7533 | 11800 | 0.0821 | - |
1053
+ | 5.7777 | 11850 | 0.0608 | - |
1054
+ | 5.8020 | 11900 | 0.0765 | - |
1055
+ | 5.8264 | 11950 | 0.0807 | - |
1056
+ | 5.8508 | 12000 | 0.0499 | - |
1057
+ | 5.8752 | 12050 | 0.0862 | - |
1058
+ | 5.8996 | 12100 | 0.0928 | - |
1059
+ | 5.9239 | 12150 | 0.08 | - |
1060
+ | 5.9483 | 12200 | 0.0553 | - |
1061
+ | 5.9727 | 12250 | 0.0736 | - |
1062
+ | 5.9971 | 12300 | 0.0576 | - |
1063
+ | 6.0215 | 12350 | 0.0945 | - |
1064
+ | 6.0458 | 12400 | 0.0669 | - |
1065
+ | 6.0702 | 12450 | 0.0492 | - |
1066
+ | 6.0946 | 12500 | 0.0795 | - |
1067
+ | 6.1190 | 12550 | 0.0935 | - |
1068
+ | 6.1433 | 12600 | 0.0554 | - |
1069
+ | 6.1677 | 12650 | 0.0643 | - |
1070
+ | 6.1921 | 12700 | 0.0715 | - |
1071
+ | 6.2165 | 12750 | 0.0803 | - |
1072
+ | 6.2409 | 12800 | 0.0745 | - |
1073
+ | 6.2652 | 12850 | 0.0626 | - |
1074
+ | 6.2896 | 12900 | 0.0539 | - |
1075
+ | 6.3140 | 12950 | 0.0719 | - |
1076
+ | 6.3384 | 13000 | 0.0465 | - |
1077
+ | 6.3627 | 13050 | 0.0735 | - |
1078
+ | 6.3871 | 13100 | 0.0637 | - |
1079
+ | 6.4115 | 13150 | 0.0437 | - |
1080
+ | 6.4359 | 13200 | 0.0744 | - |
1081
+ | 6.4603 | 13250 | 0.072 | - |
1082
+ | 6.4846 | 13300 | 0.0726 | - |
1083
+ | 6.5090 | 13350 | 0.0721 | - |
1084
+ | 6.5334 | 13400 | 0.0521 | - |
1085
+ | 6.5578 | 13450 | 0.0575 | - |
1086
+ | 6.5822 | 13500 | 0.0466 | - |
1087
+ | 6.6065 | 13550 | 0.0572 | - |
1088
+ | 6.6309 | 13600 | 0.0909 | - |
1089
+ | 6.6553 | 13650 | 0.0524 | - |
1090
+ | 6.6797 | 13700 | 0.0678 | - |
1091
+ | 6.7040 | 13750 | 0.0548 | - |
1092
+ | 6.7284 | 13800 | 0.0587 | - |
1093
+ | 6.7528 | 13850 | 0.0575 | - |
1094
+ | 6.7772 | 13900 | 0.0677 | - |
1095
+ | 6.8016 | 13950 | 0.0452 | - |
1096
+ | 6.8259 | 14000 | 0.0598 | - |
1097
+ | 6.8503 | 14050 | 0.0642 | - |
1098
+ | 6.8747 | 14100 | 0.0679 | - |
1099
+ | 6.8991 | 14150 | 0.0371 | - |
1100
+ | 6.9235 | 14200 | 0.0482 | - |
1101
+ | 6.9478 | 14250 | 0.0497 | - |
1102
+ | 6.9722 | 14300 | 0.0512 | - |
1103
+ | 6.9966 | 14350 | 0.1054 | - |
1104
+ | 7.0210 | 14400 | 0.0712 | - |
1105
+ | 7.0453 | 14450 | 0.0646 | - |
1106
+ | 7.0697 | 14500 | 0.1106 | - |
1107
+ | 7.0941 | 14550 | 0.0642 | - |
1108
+ | 7.1185 | 14600 | 0.0786 | - |
1109
+ | 7.1429 | 14650 | 0.0581 | - |
1110
+ | 7.1672 | 14700 | 0.0656 | - |
1111
+ | 7.1916 | 14750 | 0.0756 | - |
1112
+ | 7.2160 | 14800 | 0.0476 | - |
1113
+ | 7.2404 | 14850 | 0.0817 | - |
1114
+ | 7.2647 | 14900 | 0.0929 | - |
1115
+ | 7.2891 | 14950 | 0.0547 | - |
1116
+ | 7.3135 | 15000 | 0.0733 | - |
1117
+ | 7.3379 | 15050 | 0.0762 | - |
1118
+ | 7.3623 | 15100 | 0.0628 | - |
1119
+ | 7.3866 | 15150 | 0.0601 | - |
1120
+ | 7.4110 | 15200 | 0.0484 | - |
1121
+ | 7.4354 | 15250 | 0.0551 | - |
1122
+ | 7.4598 | 15300 | 0.0505 | - |
1123
+ | 7.4842 | 15350 | 0.0437 | - |
1124
+ | 7.5085 | 15400 | 0.0636 | - |
1125
+ | 7.5329 | 15450 | 0.0624 | - |
1126
+ | 7.5573 | 15500 | 0.0716 | - |
1127
+ | 7.5817 | 15550 | 0.0508 | - |
1128
+ | 7.6060 | 15600 | 0.0704 | - |
1129
+ | 7.6304 | 15650 | 0.0604 | - |
1130
+ | 7.6548 | 15700 | 0.0641 | - |
1131
+ | 7.6792 | 15750 | 0.0653 | - |
1132
+ | 7.7036 | 15800 | 0.0598 | - |
1133
+ | 7.7279 | 15850 | 0.0829 | - |
1134
+ | 7.7523 | 15900 | 0.0593 | - |
1135
+ | 7.7767 | 15950 | 0.0631 | - |
1136
+ | 7.8011 | 16000 | 0.0819 | - |
1137
+ | 7.8255 | 16050 | 0.0776 | - |
1138
+ | 7.8498 | 16100 | 0.0603 | - |
1139
+ | 7.8742 | 16150 | 0.0499 | - |
1140
+ | 7.8986 | 16200 | 0.0637 | - |
1141
+ | 7.9230 | 16250 | 0.0639 | - |
1142
+ | 7.9473 | 16300 | 0.0559 | - |
1143
+ | 7.9717 | 16350 | 0.0621 | - |
1144
+ | 7.9961 | 16400 | 0.0639 | - |
1145
+ | 8.0205 | 16450 | 0.1066 | - |
1146
+ | 8.0449 | 16500 | 0.0686 | - |
1147
+ | 8.0692 | 16550 | 0.063 | - |
1148
+ | 8.0936 | 16600 | 0.0789 | - |
1149
+ | 8.1180 | 16650 | 0.0458 | - |
1150
+ | 8.1424 | 16700 | 0.0622 | - |
1151
+ | 8.1667 | 16750 | 0.0748 | - |
1152
+ | 8.1911 | 16800 | 0.0355 | - |
1153
+ | 8.2155 | 16850 | 0.0648 | - |
1154
+ | 8.2399 | 16900 | 0.0618 | - |
1155
+ | 8.2643 | 16950 | 0.0908 | - |
1156
+ | 8.2886 | 17000 | 0.0544 | - |
1157
+ | 8.3130 | 17050 | 0.0888 | - |
1158
+ | 8.3374 | 17100 | 0.0531 | - |
1159
+ | 8.3618 | 17150 | 0.0905 | - |
1160
+ | 8.3862 | 17200 | 0.0811 | - |
1161
+ | 8.4105 | 17250 | 0.0643 | - |
1162
+ | 8.4349 | 17300 | 0.0775 | - |
1163
+ | 8.4593 | 17350 | 0.0518 | - |
1164
+ | 8.4837 | 17400 | 0.0683 | - |
1165
+ | 8.5080 | 17450 | 0.0946 | - |
1166
+ | 8.5324 | 17500 | 0.0642 | - |
1167
+ | 8.5568 | 17550 | 0.0654 | - |
1168
+ | 8.5812 | 17600 | 0.0682 | - |
1169
+ | 8.6056 | 17650 | 0.0467 | - |
1170
+ | 8.6299 | 17700 | 0.0811 | - |
1171
+ | 8.6543 | 17750 | 0.077 | - |
1172
+ | 8.6787 | 17800 | 0.0376 | - |
1173
+ | 8.7031 | 17850 | 0.1028 | - |
1174
+ | 8.7275 | 17900 | 0.0833 | - |
1175
+ | 8.7518 | 17950 | 0.0591 | - |
1176
+ | 8.7762 | 18000 | 0.0613 | - |
1177
+ | 8.8006 | 18050 | 0.0633 | - |
1178
+ | 8.8250 | 18100 | 0.0774 | - |
1179
+ | 8.8493 | 18150 | 0.0609 | - |
1180
+ | 8.8737 | 18200 | 0.0732 | - |
1181
+ | 8.8981 | 18250 | 0.085 | - |
1182
+ | 8.9225 | 18300 | 0.0762 | - |
1183
+ | 8.9469 | 18350 | 0.0518 | - |
1184
+ | 8.9712 | 18400 | 0.0806 | - |
1185
+ | 8.9956 | 18450 | 0.0467 | - |
1186
+ | 9.0200 | 18500 | 0.0467 | - |
1187
+ | 9.0444 | 18550 | 0.0836 | - |
1188
+ | 9.0687 | 18600 | 0.0452 | - |
1189
+ | 9.0931 | 18650 | 0.0503 | - |
1190
+ | 9.1175 | 18700 | 0.0624 | - |
1191
+ | 9.1419 | 18750 | 0.0605 | - |
1192
+ | 9.1663 | 18800 | 0.0829 | - |
1193
+ | 9.1906 | 18850 | 0.0497 | - |
1194
+ | 9.2150 | 18900 | 0.0575 | - |
1195
+ | 9.2394 | 18950 | 0.0645 | - |
1196
+ | 9.2638 | 19000 | 0.0956 | - |
1197
+ | 9.2882 | 19050 | 0.045 | - |
1198
+ | 9.3125 | 19100 | 0.0768 | - |
1199
+ | 9.3369 | 19150 | 0.0793 | - |
1200
+ | 9.3613 | 19200 | 0.0839 | - |
1201
+ | 9.3857 | 19250 | 0.0518 | - |
1202
+ | 9.4100 | 19300 | 0.0445 | - |
1203
+ | 9.4344 | 19350 | 0.055 | - |
1204
+ | 9.4588 | 19400 | 0.0649 | - |
1205
+ | 9.4832 | 19450 | 0.0673 | - |
1206
+ | 9.5076 | 19500 | 0.0492 | - |
1207
+ | 9.5319 | 19550 | 0.0733 | - |
1208
+ | 9.5563 | 19600 | 0.0879 | - |
1209
+ | 9.5807 | 19650 | 0.0672 | - |
1210
+ | 9.6051 | 19700 | 0.0612 | - |
1211
+ | 9.6294 | 19750 | 0.0661 | - |
1212
+ | 9.6538 | 19800 | 0.066 | - |
1213
+ | 9.6782 | 19850 | 0.0661 | - |
1214
+ | 9.7026 | 19900 | 0.0738 | - |
1215
+ | 9.7270 | 19950 | 0.0728 | - |
1216
+ | 9.7513 | 20000 | 0.0595 | - |
1217
+ | 9.7757 | 20050 | 0.0601 | - |
1218
+ | 9.8001 | 20100 | 0.0441 | - |
1219
+ | 9.8245 | 20150 | 0.0768 | - |
1220
+ | 9.8489 | 20200 | 0.0636 | - |
1221
+ | 9.8732 | 20250 | 0.0796 | - |
1222
+ | 9.8976 | 20300 | 0.0584 | - |
1223
+ | 9.9220 | 20350 | 0.0801 | - |
1224
+ | 9.9464 | 20400 | 0.0569 | - |
1225
+ | 9.9707 | 20450 | 0.0552 | - |
1226
+ | 9.9951 | 20500 | 0.0684 | - |
1227
+
1228
+ ### Framework Versions
1229
+ - Python: 3.10.12
1230
+ - SetFit: 1.0.3
1231
+ - Sentence Transformers: 2.2.2
1232
+ - Transformers: 4.35.2
1233
+ - PyTorch: 2.1.0+cu121
1234
+ - Datasets: 2.16.1
1235
+ - Tokenizers: 0.15.0
1236
+
1237
+ ## Citation
1238
+
1239
+ ### BibTeX
1240
+ ```bibtex
1241
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
1242
+ doi = {10.48550/ARXIV.2209.11055},
1243
+ url = {https://arxiv.org/abs/2209.11055},
1244
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
1245
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
1246
+ title = {Efficient Few-Shot Learning Without Prompts},
1247
+ publisher = {arXiv},
1248
+ year = {2022},
1249
+ copyright = {Creative Commons Attribution 4.0 International}
1250
+ }
1251
+ ```
1252
+
1253
+ <!--
1254
+ ## Glossary
1255
+
1256
+ *Clearly define terms in order to be accessible across audiences.*
1257
+ -->
1258
+
1259
+ <!--
1260
+ ## Model Card Authors
1261
+
1262
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1263
+ -->
1264
+
1265
+ <!--
1266
+ ## Model Card Contact
1267
+
1268
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1269
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/lighteternal_stsb-xlm-r-greek-transfer/",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.35.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.10.0",
5
+ "pytorch": "1.7.1"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20a70fd2d1c74d3a7854754000c90270a1f4e6734b469c58e988e0111b2c5339
3
+ size 1112197096
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33e2f5fcb74771881185a897da1d1f25e85061e1a476ed19397990422e2a66de
3
+ size 1987809
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 400,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b71f1d376a0a8c293a4ac7f890ff2fb81845ec785fc0e150e82be5559dadb2c
3
+ size 17083009
tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 400,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "stride": 0,
57
+ "tokenizer_class": "XLMRobertaTokenizer",
58
+ "truncation_side": "right",
59
+ "truncation_strategy": "longest_first",
60
+ "unk_token": "<unk>"
61
+ }