sshk commited on
Commit
09c6f4d
·
verified ·
1 Parent(s): c20adeb

End of training

Browse files
Files changed (4) hide show
  1. README.md +87 -196
  2. config.json +90 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md CHANGED
@@ -1,199 +1,90 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: other
3
+ base_model: sayeed99/segformer-b3-fashion
4
+ tags:
5
+ - vision
6
+ - image-segmentation
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: segformer-b3-fashion-finetuned-polo-segments-v1.5
10
+ results: []
11
  ---
12
 
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # segformer-b3-fashion-finetuned-polo-segments-v1.5
17
+
18
+ This model is a fine-tuned version of [sayeed99/segformer-b3-fashion](https://huggingface.co/sayeed99/segformer-b3-fashion) on the sshk/polo-badges-segmentation dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.1007
21
+ - Mean Iou: 0.8404
22
+ - Mean Accuracy: 0.9136
23
+ - Overall Accuracy: 0.9704
24
+ - Accuracy Unlabeled: nan
25
+ - Accuracy Collar: 0.8876
26
+ - Accuracy Polo: 0.9746
27
+ - Accuracy Lines-cuff: 0.7358
28
+ - Accuracy Lines-chest: 0.9360
29
+ - Accuracy Human: 0.9631
30
+ - Accuracy Background: 0.9848
31
+ - Accuracy Tape: nan
32
+ - Iou Unlabeled: nan
33
+ - Iou Collar: 0.7360
34
+ - Iou Polo: 0.9428
35
+ - Iou Lines-cuff: 0.6178
36
+ - Iou Lines-chest: 0.8353
37
+ - Iou Human: 0.9386
38
+ - Iou Background: 0.9718
39
+ - Iou Tape: nan
40
+
41
+ ## Model description
42
+
43
+ More information needed
44
+
45
+ ## Intended uses & limitations
46
+
47
+ More information needed
48
+
49
+ ## Training and evaluation data
50
+
51
+ More information needed
52
+
53
+ ## Training procedure
54
+
55
+ ### Training hyperparameters
56
+
57
+ The following hyperparameters were used during training:
58
+ - learning_rate: 6e-05
59
+ - train_batch_size: 8
60
+ - eval_batch_size: 8
61
+ - seed: 42
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - num_epochs: 30
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Collar | Accuracy Polo | Accuracy Lines-cuff | Accuracy Lines-chest | Accuracy Human | Accuracy Background | Accuracy Tape | Iou Unlabeled | Iou Collar | Iou Polo | Iou Lines-cuff | Iou Lines-chest | Iou Human | Iou Background | Iou Tape |
69
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------:|:-------------------:|:--------------------:|:--------------:|:-------------------:|:-------------:|:-------------:|:----------:|:--------:|:--------------:|:---------------:|:---------:|:--------------:|:--------:|
70
+ | 0.1679 | 2.2222 | 20 | 0.2031 | 0.5532 | 0.5985 | 0.9492 | nan | 0.6856 | 0.9707 | 0.0 | 0.0022 | 0.9482 | 0.9843 | nan | nan | 0.5491 | 0.8882 | 0.0 | 0.0022 | 0.9192 | 0.9604 | nan |
71
+ | 0.0921 | 4.4444 | 40 | 0.1359 | 0.7103 | 0.7618 | 0.9631 | nan | 0.8586 | 0.9739 | 0.1373 | 0.6598 | 0.9577 | 0.9835 | nan | nan | 0.6786 | 0.9244 | 0.1373 | 0.6217 | 0.9305 | 0.9691 | nan |
72
+ | 0.0603 | 6.6667 | 60 | 0.1166 | 0.8147 | 0.8651 | 0.9672 | nan | 0.8436 | 0.9795 | 0.6385 | 0.7867 | 0.9586 | 0.9837 | nan | nan | 0.7114 | 0.9315 | 0.5955 | 0.7446 | 0.9352 | 0.9700 | nan |
73
+ | 0.0581 | 8.8889 | 80 | 0.1121 | 0.8185 | 0.8809 | 0.9677 | nan | 0.8363 | 0.9767 | 0.6995 | 0.8279 | 0.9594 | 0.9857 | nan | nan | 0.7091 | 0.9336 | 0.6009 | 0.7611 | 0.9357 | 0.9709 | nan |
74
+ | 0.0445 | 11.1111 | 100 | 0.1047 | 0.8317 | 0.9033 | 0.9699 | nan | 0.8719 | 0.9687 | 0.7198 | 0.9070 | 0.9686 | 0.9836 | nan | nan | 0.7263 | 0.9403 | 0.6081 | 0.8045 | 0.9390 | 0.9721 | nan |
75
+ | 0.0456 | 13.3333 | 120 | 0.1055 | 0.8342 | 0.9151 | 0.9694 | nan | 0.8931 | 0.9687 | 0.7391 | 0.9402 | 0.9614 | 0.9878 | nan | nan | 0.7285 | 0.9405 | 0.6102 | 0.8184 | 0.9371 | 0.9708 | nan |
76
+ | 0.0443 | 15.5556 | 140 | 0.1034 | 0.8349 | 0.9039 | 0.9700 | nan | 0.8740 | 0.9742 | 0.7208 | 0.9059 | 0.9636 | 0.9851 | nan | nan | 0.7324 | 0.9411 | 0.6091 | 0.8166 | 0.9384 | 0.9717 | nan |
77
+ | 0.0475 | 17.7778 | 160 | 0.1032 | 0.8384 | 0.9139 | 0.9699 | nan | 0.8885 | 0.9738 | 0.7383 | 0.9356 | 0.9604 | 0.9868 | nan | nan | 0.7341 | 0.9409 | 0.6160 | 0.8300 | 0.9377 | 0.9717 | nan |
78
+ | 0.0411 | 20.0 | 180 | 0.1018 | 0.8403 | 0.9150 | 0.9702 | nan | 0.8911 | 0.9770 | 0.7389 | 0.9378 | 0.9592 | 0.9862 | nan | nan | 0.7362 | 0.9417 | 0.6194 | 0.8346 | 0.9383 | 0.9716 | nan |
79
+ | 0.0345 | 22.2222 | 200 | 0.1003 | 0.8397 | 0.9112 | 0.9704 | nan | 0.8885 | 0.9768 | 0.7359 | 0.9201 | 0.9625 | 0.9836 | nan | nan | 0.7355 | 0.9423 | 0.6157 | 0.8345 | 0.9387 | 0.9716 | nan |
80
+ | 0.0403 | 24.4444 | 220 | 0.1007 | 0.8397 | 0.9140 | 0.9705 | nan | 0.8826 | 0.9745 | 0.7393 | 0.9392 | 0.9633 | 0.9851 | nan | nan | 0.7353 | 0.9434 | 0.6172 | 0.8319 | 0.9388 | 0.9716 | nan |
81
+ | 0.0563 | 26.6667 | 240 | 0.1009 | 0.8406 | 0.9140 | 0.9704 | nan | 0.8914 | 0.9765 | 0.7306 | 0.9391 | 0.9603 | 0.9859 | nan | nan | 0.7360 | 0.9427 | 0.6202 | 0.8344 | 0.9383 | 0.9718 | nan |
82
+ | 0.0464 | 28.8889 | 260 | 0.1007 | 0.8404 | 0.9136 | 0.9704 | nan | 0.8876 | 0.9746 | 0.7358 | 0.9360 | 0.9631 | 0.9848 | nan | nan | 0.7360 | 0.9428 | 0.6178 | 0.8353 | 0.9386 | 0.9718 | nan |
83
+
84
+
85
+ ### Framework versions
86
+
87
+ - Transformers 4.44.0
88
+ - Pytorch 2.4.0+cu121
89
+ - Datasets 2.21.0
90
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sayeed99/segformer-b3-fashion",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 768,
9
+ "depths": [
10
+ 3,
11
+ 4,
12
+ 18,
13
+ 3
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 64,
26
+ 128,
27
+ 320,
28
+ 512
29
+ ],
30
+ "id2label": {
31
+ "0": "unlabeled",
32
+ "1": "collar",
33
+ "2": "polo",
34
+ "3": "lines-cuff",
35
+ "4": "lines-chest",
36
+ "5": "human",
37
+ "6": "background",
38
+ "7": "tape"
39
+ },
40
+ "image_size": 224,
41
+ "initializer_range": 0.02,
42
+ "label2id": {
43
+ "background": 6,
44
+ "collar": 1,
45
+ "human": 5,
46
+ "lines-chest": 4,
47
+ "lines-cuff": 3,
48
+ "polo": 2,
49
+ "tape": 7,
50
+ "unlabeled": 0
51
+ },
52
+ "layer_norm_eps": 1e-06,
53
+ "mlp_ratios": [
54
+ 4,
55
+ 4,
56
+ 4,
57
+ 4
58
+ ],
59
+ "model_type": "segformer",
60
+ "num_attention_heads": [
61
+ 1,
62
+ 2,
63
+ 5,
64
+ 8
65
+ ],
66
+ "num_channels": 3,
67
+ "num_encoder_blocks": 4,
68
+ "patch_sizes": [
69
+ 7,
70
+ 3,
71
+ 3,
72
+ 3
73
+ ],
74
+ "reshape_last_stage": true,
75
+ "semantic_loss_ignore_index": 255,
76
+ "sr_ratios": [
77
+ 8,
78
+ 4,
79
+ 2,
80
+ 1
81
+ ],
82
+ "strides": [
83
+ 4,
84
+ 2,
85
+ 2,
86
+ 2
87
+ ],
88
+ "torch_dtype": "float32",
89
+ "transformers_version": "4.44.0"
90
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03992b83e1960706dd974418c37e6917d3944be9c1e3952f79a6e732ede6f27f
3
+ size 188998232
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:184cc442e5e5d0c55a150f39960cde9b4aa83b8b30feb734282f8513c27d1c99
3
+ size 5304