ssbuild commited on
Commit
083379f
·
1 Parent(s): 0ad46fe
MODEL_LICENSE.pdf ADDED
Binary file (315 kB). View file
 
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data/nlp/pre_models/torch/xverse/XVERSE-13B",
3
+ "architectures": [
4
+ "XverseForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_xverse.XverseConfig",
8
+ "AutoModelForCausalLM": "modeling_xverse.XverseForCausalLM"
9
+ },
10
+ "bos_token_id": 2,
11
+ "decoder_start_token_id": 2,
12
+ "eos_token_id": 3,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 5120,
15
+ "initializer_range": 0.02,
16
+ "initializer_weight": false,
17
+ "intermediate_size": 13824,
18
+ "max_position_embeddings": 8192,
19
+ "model_type": "xverse",
20
+ "num_attention_heads": 40,
21
+ "num_hidden_layers": 40,
22
+ "pad_token_id": 1,
23
+ "quantization_bit": 4,
24
+ "return_dict": false,
25
+ "rms_norm_eps": 1e-06,
26
+ "task_specific_params": {},
27
+ "tie_word_embeddings": false,
28
+ "torch_dtype": "float16",
29
+ "transformers_version": "4.31.0",
30
+ "use_cache": true,
31
+ "vocab_size": 100278
32
+ }
configuration_xverse.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ XVERSE model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ XVERSE_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
29
+
30
+
31
+ class XverseConfig(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`XverseModel`]. It is used to instantiate an Xverse
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the XVERSE-13B.
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 100278):
43
+ Vocabulary size of the XVERSE model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`XverseModel`]
45
+ hidden_size (`int`, *optional*, defaults to 5120):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 13824):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 40):
50
+ Number of hidden layers in the Transformer encoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 40):
52
+ Number of attention heads for each attention layer in the Transformer encoder.
53
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
54
+ The non-linear activation function (function or string) in the decoder.
55
+ max_position_embeddings (`int`, *optional*, defaults to 8192):
56
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
57
+ just in case (e.g., 512 or 1024 or 2048).
58
+ initializer_range (`float`, *optional*, defaults to 0.02):
59
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
60
+ rms_norm_eps (`float`, *optional*, defaults to 1e-6):
61
+ The epsilon used by the rms normalization layers.
62
+ use_cache (`bool`, *optional*, defaults to `True`):
63
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
64
+ relevant if `config.is_decoder=True`.
65
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
66
+ Whether to tie weight embeddings
67
+
68
+ Example:
69
+
70
+ ```python
71
+ >>> from transformers import XverseModel, XverseConfig
72
+
73
+ >>> # Initializing a Xverse XVERSE-13B style configuration
74
+ >>> configuration = XverseConfig()
75
+
76
+ >>> # Initializing a model from the XVERSE-13B style configuration
77
+ >>> model = XverseModel(configuration)
78
+
79
+ >>> # Accessing the model configuration
80
+ >>> configuration = model.config
81
+ ```"""
82
+ model_type = "xverse"
83
+ keys_to_ignore_at_inference = ["past_key_values"]
84
+
85
+ def __init__(
86
+ self,
87
+ vocab_size=100278,
88
+ hidden_size=5120,
89
+ intermediate_size=13824,
90
+ num_hidden_layers=40,
91
+ num_attention_heads=40,
92
+ hidden_act="silu",
93
+ max_position_embeddings=8192,
94
+ initializer_range=0.02,
95
+ rms_norm_eps=1e-6,
96
+ use_cache=True,
97
+ pad_token_id=None,
98
+ bos_token_id=1,
99
+ eos_token_id=2,
100
+ tie_word_embeddings=False,
101
+ **kwargs,
102
+ ):
103
+ self.vocab_size = vocab_size
104
+ self.max_position_embeddings = max_position_embeddings
105
+ self.hidden_size = hidden_size
106
+ self.intermediate_size = intermediate_size
107
+ self.num_hidden_layers = num_hidden_layers
108
+ self.num_attention_heads = num_attention_heads
109
+
110
+ self.hidden_act = hidden_act
111
+ self.initializer_range = initializer_range
112
+ self.rms_norm_eps = rms_norm_eps
113
+ self.use_cache = use_cache
114
+
115
+ super().__init__(
116
+ pad_token_id=pad_token_id,
117
+ bos_token_id=bos_token_id,
118
+ eos_token_id=eos_token_id,
119
+ tie_word_embeddings=tie_word_embeddings,
120
+ **kwargs,
121
+ )
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 2,
4
+ "decoder_start_token_id": 2,
5
+ "eos_token_id": 3,
6
+ "pad_token_id": 1,
7
+ "transformers_version": "4.31.0"
8
+ }
modeling_xverse.py ADDED
@@ -0,0 +1,767 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch XVERSE model."""
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.nn.functional as F
26
+ import torch.utils.checkpoint
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+
30
+ from transformers.activations import ACT2FN
31
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
32
+ from transformers.modeling_utils import PreTrainedModel
33
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
34
+ from .configuration_xverse import XverseConfig
35
+
36
+
37
+ logger = logging.get_logger(__name__)
38
+
39
+ _CONFIG_FOR_DOC = "XverseConfig"
40
+
41
+
42
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
43
+ def _make_causal_mask(
44
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
45
+ ):
46
+ """
47
+ Make causal mask used for bi-directional self-attention.
48
+ """
49
+ bsz, tgt_len = input_ids_shape
50
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
51
+ mask_cond = torch.arange(mask.size(-1), device=device)
52
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
53
+ mask = mask.to(dtype)
54
+
55
+ if past_key_values_length > 0:
56
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
57
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
58
+
59
+
60
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
61
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
62
+ """
63
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
64
+ """
65
+ bsz, src_len = mask.size()
66
+ tgt_len = tgt_len if tgt_len is not None else src_len
67
+
68
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
69
+
70
+ inverted_mask = 1.0 - expanded_mask
71
+
72
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
73
+
74
+
75
+ class XverseRMSNorm(nn.Module):
76
+ def __init__(self, hidden_size, eps=1e-6):
77
+ """
78
+ XverseRMSNorm is equivalent to T5LayerNorm
79
+ """
80
+ super().__init__()
81
+ self.weight = nn.Parameter(torch.ones(hidden_size))
82
+ self.variance_epsilon = eps
83
+
84
+ def forward(self, hidden_states):
85
+ input_dtype = hidden_states.dtype
86
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
87
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
88
+
89
+ return (self.weight * hidden_states).to(input_dtype)
90
+
91
+
92
+ class XverseRotaryEmbedding(torch.nn.Module):
93
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
94
+ super().__init__()
95
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
96
+ self.register_buffer("inv_freq", inv_freq)
97
+
98
+ # Build here to make `torch.jit.trace` work.
99
+ self.max_seq_len_cached = max_position_embeddings
100
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
101
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
102
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
103
+ emb = torch.cat((freqs, freqs), dim=-1)
104
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
105
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
106
+
107
+ def forward(self, x, seq_len=None):
108
+ # x: [bs, num_attention_heads, seq_len, head_size]
109
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
110
+ if seq_len > self.max_seq_len_cached:
111
+ self.max_seq_len_cached = seq_len
112
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
113
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
114
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
115
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
116
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
117
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
118
+ return (
119
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
120
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
121
+ )
122
+
123
+
124
+ def rotate_half(x):
125
+ """Rotates half the hidden dims of the input."""
126
+ x1 = x[..., : x.shape[-1] // 2]
127
+ x2 = x[..., x.shape[-1] // 2 :]
128
+ return torch.cat((-x2, x1), dim=-1)
129
+
130
+
131
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
132
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
133
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
134
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
135
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
136
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
137
+ q_embed = (q * cos) + (rotate_half(q) * sin)
138
+ k_embed = (k * cos) + (rotate_half(k) * sin)
139
+ return q_embed, k_embed
140
+
141
+
142
+ class XverseMLP(nn.Module):
143
+ def __init__(
144
+ self,
145
+ hidden_size: int,
146
+ intermediate_size: int,
147
+ hidden_act: str,
148
+ ):
149
+ super().__init__()
150
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
151
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
152
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
153
+ self.act_fn = ACT2FN[hidden_act]
154
+
155
+ def forward(self, x):
156
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
157
+
158
+
159
+ class XverseAttention(nn.Module):
160
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
161
+
162
+ def __init__(self, config: XverseConfig):
163
+ super().__init__()
164
+ self.config = config
165
+ self.hidden_size = config.hidden_size
166
+ self.num_heads = config.num_attention_heads
167
+ self.head_dim = self.hidden_size // self.num_heads
168
+ self.max_position_embeddings = config.max_position_embeddings
169
+
170
+ if (self.head_dim * self.num_heads) != self.hidden_size:
171
+ raise ValueError(
172
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
173
+ f" and `num_heads`: {self.num_heads})."
174
+ )
175
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
176
+ self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
177
+ self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
178
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
179
+ self.rotary_emb = XverseRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
180
+
181
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
182
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
183
+
184
+ def forward(
185
+ self,
186
+ hidden_states: torch.Tensor,
187
+ attention_mask: Optional[torch.Tensor] = None,
188
+ position_ids: Optional[torch.LongTensor] = None,
189
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
190
+ output_attentions: bool = False,
191
+ use_cache: bool = False,
192
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
193
+ bsz, q_len, _ = hidden_states.size()
194
+
195
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
196
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
197
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
198
+
199
+ kv_seq_len = key_states.shape[-2]
200
+ if past_key_value is not None:
201
+ kv_seq_len += past_key_value[0].shape[-2]
202
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
203
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
204
+ # [bsz, nh, t, hd]
205
+
206
+ if past_key_value is not None:
207
+ # reuse k, v, self_attention
208
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
209
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
210
+
211
+ past_key_value = (key_states, value_states) if use_cache else None
212
+
213
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
214
+
215
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
216
+ raise ValueError(
217
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
218
+ f" {attn_weights.size()}"
219
+ )
220
+
221
+ if attention_mask is not None:
222
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
223
+ raise ValueError(
224
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
225
+ )
226
+ attn_weights = attn_weights + attention_mask
227
+ attn_weights = torch.max(
228
+ attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
229
+ )
230
+
231
+ # upcast attention to fp32
232
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
233
+ attn_output = torch.matmul(attn_weights, value_states)
234
+
235
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
236
+ raise ValueError(
237
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
238
+ f" {attn_output.size()}"
239
+ )
240
+
241
+ attn_output = attn_output.transpose(1, 2)
242
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
243
+
244
+ attn_output = self.o_proj(attn_output)
245
+
246
+ if not output_attentions:
247
+ attn_weights = None
248
+
249
+ return attn_output, attn_weights, past_key_value
250
+
251
+
252
+ class XverseDecoderLayer(nn.Module):
253
+ def __init__(self, config: XverseConfig):
254
+ super().__init__()
255
+ self.hidden_size = config.hidden_size
256
+ self.self_attn = XverseAttention(config=config)
257
+ self.mlp = XverseMLP(
258
+ hidden_size=self.hidden_size,
259
+ intermediate_size=config.intermediate_size,
260
+ hidden_act=config.hidden_act,
261
+ )
262
+ self.input_layernorm = XverseRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
263
+ self.post_attention_layernorm = XverseRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
264
+
265
+ def forward(
266
+ self,
267
+ hidden_states: torch.Tensor,
268
+ attention_mask: Optional[torch.Tensor] = None,
269
+ position_ids: Optional[torch.LongTensor] = None,
270
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
271
+ output_attentions: Optional[bool] = False,
272
+ use_cache: Optional[bool] = False,
273
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
274
+ """
275
+ Args:
276
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
277
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
278
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
279
+ output_attentions (`bool`, *optional*):
280
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
281
+ returned tensors for more detail.
282
+ use_cache (`bool`, *optional*):
283
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
284
+ (see `past_key_values`).
285
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
286
+ """
287
+
288
+ residual = hidden_states
289
+
290
+ hidden_states = self.input_layernorm(hidden_states)
291
+
292
+ # Self Attention
293
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
294
+ hidden_states=hidden_states,
295
+ attention_mask=attention_mask,
296
+ position_ids=position_ids,
297
+ past_key_value=past_key_value,
298
+ output_attentions=output_attentions,
299
+ use_cache=use_cache,
300
+ )
301
+ hidden_states = residual + hidden_states
302
+
303
+ # Fully Connected
304
+ residual = hidden_states
305
+ hidden_states = self.post_attention_layernorm(hidden_states)
306
+ hidden_states = self.mlp(hidden_states)
307
+ hidden_states = residual + hidden_states
308
+
309
+ outputs = (hidden_states,)
310
+
311
+ if output_attentions:
312
+ outputs += (self_attn_weights,)
313
+
314
+ if use_cache:
315
+ outputs += (present_key_value,)
316
+
317
+ return outputs
318
+
319
+
320
+ XVERSE_START_DOCSTRING = r"""
321
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
322
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
323
+ etc.)
324
+
325
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
326
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
327
+ and behavior.
328
+
329
+ Parameters:
330
+ config ([`XverseConfig`]):
331
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
332
+ load the weights associated with the model, only the configuration. Check out the
333
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
334
+ """
335
+
336
+
337
+ @add_start_docstrings(
338
+ "The bare Xverse Model outputting raw hidden-states without any specific head on top.",
339
+ XVERSE_START_DOCSTRING,
340
+ )
341
+ class XversePreTrainedModel(PreTrainedModel):
342
+ config_class = XverseConfig
343
+ base_model_prefix = "model"
344
+ supports_gradient_checkpointing = True
345
+ _no_split_modules = ["XverseDecoderLayer"]
346
+ _skip_keys_device_placement = "past_key_values"
347
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
348
+
349
+ def _init_weights(self, module):
350
+ std = self.config.initializer_range
351
+ if isinstance(module, nn.Linear):
352
+ module.weight.data.normal_(mean=0.0, std=std)
353
+ if module.bias is not None:
354
+ module.bias.data.zero_()
355
+ elif isinstance(module, nn.Embedding):
356
+ module.weight.data.normal_(mean=0.0, std=std)
357
+ if module.padding_idx is not None:
358
+ module.weight.data[module.padding_idx].zero_()
359
+
360
+ def _set_gradient_checkpointing(self, module, value=False):
361
+ if isinstance(module, XverseModel):
362
+ module.gradient_checkpointing = value
363
+
364
+
365
+ XVERSE_INPUTS_DOCSTRING = r"""
366
+ Args:
367
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
368
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
369
+ it.
370
+
371
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
372
+ [`PreTrainedTokenizer.__call__`] for details.
373
+
374
+ [What are input IDs?](../glossary#input-ids)
375
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
376
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
377
+
378
+ - 1 for tokens that are **not masked**,
379
+ - 0 for tokens that are **masked**.
380
+
381
+ [What are attention masks?](../glossary#attention-mask)
382
+
383
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
384
+ [`PreTrainedTokenizer.__call__`] for details.
385
+
386
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
387
+ `past_key_values`).
388
+
389
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
390
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
391
+ information on the default strategy.
392
+
393
+ - 1 indicates the head is **not masked**,
394
+ - 0 indicates the head is **masked**.
395
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
396
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
397
+ config.n_positions - 1]`.
398
+
399
+ [What are position IDs?](../glossary#position-ids)
400
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
401
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
402
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
403
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
404
+
405
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
406
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
407
+
408
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
409
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
410
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
411
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
412
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
413
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
414
+ model's internal embedding lookup matrix.
415
+ use_cache (`bool`, *optional*):
416
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
417
+ `past_key_values`).
418
+ output_attentions (`bool`, *optional*):
419
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
420
+ tensors for more detail.
421
+ output_hidden_states (`bool`, *optional*):
422
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
423
+ more detail.
424
+ return_dict (`bool`, *optional*):
425
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
426
+ """
427
+
428
+ @add_start_docstrings(
429
+ "The bare Xverse Model outputting raw hidden-states without any specific head on top.",
430
+ XVERSE_START_DOCSTRING,
431
+ )
432
+ class XverseModel(XversePreTrainedModel):
433
+ """
434
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`XverseDecoderLayer`]
435
+
436
+ Args:
437
+ config: XverseConfig
438
+ """
439
+
440
+ def __init__(self, config: XverseConfig):
441
+ super().__init__(config)
442
+ self.padding_idx = config.pad_token_id
443
+ self.vocab_size = config.vocab_size
444
+
445
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
446
+ self.layers = nn.ModuleList([XverseDecoderLayer(config) for _ in range(config.num_hidden_layers)])
447
+ self.norm = XverseRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
448
+
449
+ self.gradient_checkpointing = False
450
+ # Initialize weights and apply final processing
451
+ self.post_init()
452
+
453
+ def get_input_embeddings(self):
454
+ return self.embed_tokens
455
+
456
+ def set_input_embeddings(self, value):
457
+ self.embed_tokens = value
458
+
459
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
460
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
461
+ # create causal mask
462
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
463
+ combined_attention_mask = None
464
+ if input_shape[-1] > 1:
465
+ combined_attention_mask = _make_causal_mask(
466
+ input_shape,
467
+ inputs_embeds.dtype,
468
+ device=inputs_embeds.device,
469
+ past_key_values_length=past_key_values_length,
470
+ )
471
+
472
+ if attention_mask is not None:
473
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
474
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
475
+ inputs_embeds.device
476
+ )
477
+ combined_attention_mask = (
478
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
479
+ )
480
+
481
+ return combined_attention_mask
482
+
483
+ @add_start_docstrings_to_model_forward(XVERSE_INPUTS_DOCSTRING)
484
+ def forward(
485
+ self,
486
+ input_ids: torch.LongTensor = None,
487
+ attention_mask: Optional[torch.Tensor] = None,
488
+ position_ids: Optional[torch.LongTensor] = None,
489
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
490
+ inputs_embeds: Optional[torch.FloatTensor] = None,
491
+ use_cache: Optional[bool] = None,
492
+ output_attentions: Optional[bool] = None,
493
+ output_hidden_states: Optional[bool] = None,
494
+ return_dict: Optional[bool] = None,
495
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
496
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
497
+ output_hidden_states = (
498
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
499
+ )
500
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
501
+
502
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
503
+
504
+ # retrieve input_ids and inputs_embeds
505
+ if input_ids is not None and inputs_embeds is not None:
506
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
507
+ elif input_ids is not None:
508
+ batch_size, seq_length = input_ids.shape
509
+ elif inputs_embeds is not None:
510
+ batch_size, seq_length, _ = inputs_embeds.shape
511
+ else:
512
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
513
+
514
+ seq_length_with_past = seq_length
515
+ past_key_values_length = 0
516
+
517
+ if past_key_values is not None:
518
+ past_key_values_length = past_key_values[0][0].shape[2]
519
+ seq_length_with_past = seq_length_with_past + past_key_values_length
520
+
521
+ if position_ids is None:
522
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
523
+ position_ids = torch.arange(
524
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
525
+ )
526
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
527
+ else:
528
+ position_ids = position_ids.view(-1, seq_length).long()
529
+
530
+ if inputs_embeds is None:
531
+ inputs_embeds = self.embed_tokens(input_ids)
532
+ # embed positions
533
+ if attention_mask is None:
534
+ attention_mask = torch.ones(
535
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
536
+ )
537
+ attention_mask = self._prepare_decoder_attention_mask(
538
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
539
+ )
540
+
541
+ hidden_states = inputs_embeds
542
+
543
+ if self.gradient_checkpointing and self.training:
544
+ if use_cache:
545
+ logger.warning_once(
546
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
547
+ )
548
+ use_cache = False
549
+
550
+ # decoder layers
551
+ all_hidden_states = () if output_hidden_states else None
552
+ all_self_attns = () if output_attentions else None
553
+ next_decoder_cache = () if use_cache else None
554
+
555
+ for idx, decoder_layer in enumerate(self.layers):
556
+ if output_hidden_states:
557
+ all_hidden_states += (hidden_states,)
558
+
559
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
560
+
561
+ if self.gradient_checkpointing and self.training:
562
+
563
+ def create_custom_forward(module):
564
+ def custom_forward(*inputs):
565
+ # None for past_key_value
566
+ return module(*inputs, output_attentions, None)
567
+
568
+ return custom_forward
569
+
570
+ layer_outputs = torch.utils.checkpoint.checkpoint(
571
+ create_custom_forward(decoder_layer),
572
+ hidden_states,
573
+ attention_mask,
574
+ position_ids,
575
+ None,
576
+ )
577
+ else:
578
+ layer_outputs = decoder_layer(
579
+ hidden_states,
580
+ attention_mask=attention_mask,
581
+ position_ids=position_ids,
582
+ past_key_value=past_key_value,
583
+ output_attentions=output_attentions,
584
+ use_cache=use_cache,
585
+ )
586
+
587
+ hidden_states = layer_outputs[0]
588
+
589
+ if use_cache:
590
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
591
+
592
+ if output_attentions:
593
+ all_self_attns += (layer_outputs[1],)
594
+
595
+ hidden_states = self.norm(hidden_states)
596
+
597
+ # add hidden states from the last decoder layer
598
+ if output_hidden_states:
599
+ all_hidden_states += (hidden_states,)
600
+
601
+ next_cache = next_decoder_cache if use_cache else None
602
+ if not return_dict:
603
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
604
+ return BaseModelOutputWithPast(
605
+ last_hidden_state=hidden_states,
606
+ past_key_values=next_cache,
607
+ hidden_states=all_hidden_states,
608
+ attentions=all_self_attns,
609
+ )
610
+
611
+
612
+ class XverseForCausalLM(XversePreTrainedModel):
613
+ _tied_weights_keys = ["lm_head.weight"]
614
+
615
+ def __init__(self, config):
616
+ super().__init__(config)
617
+ self.model = XverseModel(config)
618
+
619
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
620
+
621
+ # Initialize weights and apply final processing
622
+ self.post_init()
623
+
624
+ def get_input_embeddings(self):
625
+ return self.model.embed_tokens
626
+
627
+ def set_input_embeddings(self, value):
628
+ self.model.embed_tokens = value
629
+
630
+ def get_output_embeddings(self):
631
+ return self.lm_head
632
+
633
+ def set_output_embeddings(self, new_embeddings):
634
+ self.lm_head = new_embeddings
635
+
636
+ def set_decoder(self, decoder):
637
+ self.model = decoder
638
+
639
+ def get_decoder(self):
640
+ return self.model
641
+
642
+ @add_start_docstrings_to_model_forward(XVERSE_INPUTS_DOCSTRING)
643
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
644
+ def forward(
645
+ self,
646
+ input_ids: torch.LongTensor = None,
647
+ attention_mask: Optional[torch.Tensor] = None,
648
+ position_ids: Optional[torch.LongTensor] = None,
649
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
650
+ inputs_embeds: Optional[torch.FloatTensor] = None,
651
+ labels: Optional[torch.LongTensor] = None,
652
+ use_cache: Optional[bool] = None,
653
+ output_attentions: Optional[bool] = None,
654
+ output_hidden_states: Optional[bool] = None,
655
+ return_dict: Optional[bool] = None,
656
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
657
+ r"""
658
+ Args:
659
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
660
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
661
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
662
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
663
+
664
+ Returns:
665
+
666
+ Example:
667
+
668
+ ```python
669
+ >>> from transformers import AutoTokenizer, AutoModelForCausalLM
670
+
671
+ >>> model = AutoModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS, trust_remote_code=True)
672
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
673
+
674
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
675
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
676
+
677
+ >>> # Generate
678
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
679
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
680
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
681
+ ```"""
682
+
683
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
684
+ output_hidden_states = (
685
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
686
+ )
687
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
688
+
689
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
690
+ outputs = self.model(
691
+ input_ids=input_ids,
692
+ attention_mask=attention_mask,
693
+ position_ids=position_ids,
694
+ past_key_values=past_key_values,
695
+ inputs_embeds=inputs_embeds,
696
+ use_cache=use_cache,
697
+ output_attentions=output_attentions,
698
+ output_hidden_states=output_hidden_states,
699
+ return_dict=return_dict,
700
+ )
701
+
702
+ hidden_states = outputs[0]
703
+ logits = self.lm_head(hidden_states)
704
+
705
+ loss = None
706
+ if labels is not None:
707
+ # Shift so that tokens < n predict n
708
+ shift_logits = logits[..., :-1, :].contiguous()
709
+ shift_labels = labels[..., 1:].contiguous()
710
+ # Flatten the tokens
711
+ loss_fct = CrossEntropyLoss()
712
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
713
+ shift_labels = shift_labels.view(-1)
714
+ # Enable model parallelism
715
+ shift_labels = shift_labels.to(shift_logits.device)
716
+ loss = loss_fct(shift_logits, shift_labels)
717
+
718
+ if not return_dict:
719
+ output = (logits,) + outputs[1:]
720
+ return (loss,) + output if loss is not None else output
721
+
722
+ return CausalLMOutputWithPast(
723
+ loss=loss,
724
+ logits=logits,
725
+ past_key_values=outputs.past_key_values,
726
+ hidden_states=outputs.hidden_states,
727
+ attentions=outputs.attentions,
728
+ )
729
+
730
+ def prepare_inputs_for_generation(
731
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
732
+ ):
733
+ if past_key_values:
734
+ input_ids = input_ids[:, -1:]
735
+
736
+ position_ids = kwargs.get("position_ids", None)
737
+ if attention_mask is not None and position_ids is None:
738
+ # create position_ids on the fly for batch generation
739
+ position_ids = attention_mask.long().cumsum(-1) - 1
740
+ position_ids.masked_fill_(attention_mask == 0, 1)
741
+ if past_key_values:
742
+ position_ids = position_ids[:, -1].unsqueeze(-1)
743
+
744
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
745
+ if inputs_embeds is not None and past_key_values is None:
746
+ model_inputs = {"inputs_embeds": inputs_embeds}
747
+ else:
748
+ model_inputs = {"input_ids": input_ids}
749
+
750
+ model_inputs.update(
751
+ {
752
+ "position_ids": position_ids,
753
+ "past_key_values": past_key_values,
754
+ "use_cache": kwargs.get("use_cache"),
755
+ "attention_mask": attention_mask,
756
+ }
757
+ )
758
+ return model_inputs
759
+
760
+ @staticmethod
761
+ def _reorder_cache(past_key_values, beam_idx):
762
+ reordered_past = ()
763
+ for layer_past in past_key_values:
764
+ reordered_past += (
765
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
766
+ )
767
+ return reordered_past
pytorch_model-00001-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:622f96e0ab88ba4b3f03e89cb8a9fa3e0f4c25cbafa90fe91dbb275f5a5af31a
3
+ size 1992346166
pytorch_model-00002-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0118101054c1d526fcf0ceb85fbb4bede087d58ca5f91536a5296fc1cfe1e1fb
3
+ size 1979535034
pytorch_model-00003-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c374129861c7ef63b4a74b39eab9a62d430f900ff014c6f20c3806069f1475b
3
+ size 1988719911
pytorch_model-00004-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:924beb05ab213fa2a1a1a5bffa28a1a6f3ff1f71683e998bd6f19423692cb640
3
+ size 1415464115
pytorch_model-00005-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f2f153dba46252fd71ff6cbf868f2827a526679dac699cc6ab25e57cb541753
3
+ size 1026847658
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,690 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 8402672640
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00005-of-00005.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00005.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
10
+ "model.layers.0.mlp.down_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
11
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
12
+ "model.layers.0.mlp.gate_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
13
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
14
+ "model.layers.0.mlp.up_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
15
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
16
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
17
+ "model.layers.0.self_attn.k_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
18
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
19
+ "model.layers.0.self_attn.o_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
20
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
21
+ "model.layers.0.self_attn.q_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
22
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00005.bin",
23
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
24
+ "model.layers.0.self_attn.v_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
25
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
26
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
27
+ "model.layers.1.mlp.down_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
28
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
29
+ "model.layers.1.mlp.gate_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
30
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
31
+ "model.layers.1.mlp.up_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
32
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
33
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
34
+ "model.layers.1.self_attn.k_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
35
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
36
+ "model.layers.1.self_attn.o_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
37
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
38
+ "model.layers.1.self_attn.q_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
39
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00005.bin",
40
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
41
+ "model.layers.1.self_attn.v_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
42
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
43
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
44
+ "model.layers.10.mlp.down_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
45
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
46
+ "model.layers.10.mlp.gate_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
47
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
48
+ "model.layers.10.mlp.up_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
49
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
50
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
51
+ "model.layers.10.self_attn.k_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
52
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
53
+ "model.layers.10.self_attn.o_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
54
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
55
+ "model.layers.10.self_attn.q_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
56
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00005.bin",
57
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
58
+ "model.layers.10.self_attn.v_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
59
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
60
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
61
+ "model.layers.11.mlp.down_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
62
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
63
+ "model.layers.11.mlp.gate_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
64
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
65
+ "model.layers.11.mlp.up_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
66
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
67
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
68
+ "model.layers.11.self_attn.k_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
69
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
70
+ "model.layers.11.self_attn.o_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
71
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
72
+ "model.layers.11.self_attn.q_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
73
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00005.bin",
74
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
75
+ "model.layers.11.self_attn.v_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
76
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
77
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
78
+ "model.layers.12.mlp.down_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
79
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
80
+ "model.layers.12.mlp.gate_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
81
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
82
+ "model.layers.12.mlp.up_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
83
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
84
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
85
+ "model.layers.12.self_attn.k_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
86
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
87
+ "model.layers.12.self_attn.o_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
88
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
89
+ "model.layers.12.self_attn.q_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
90
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00005.bin",
91
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
92
+ "model.layers.12.self_attn.v_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
93
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
94
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
95
+ "model.layers.13.mlp.down_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
96
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
97
+ "model.layers.13.mlp.gate_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
98
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
99
+ "model.layers.13.mlp.up_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
100
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
101
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
102
+ "model.layers.13.self_attn.k_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
103
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
104
+ "model.layers.13.self_attn.o_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
105
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
106
+ "model.layers.13.self_attn.q_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
107
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00005.bin",
108
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
109
+ "model.layers.13.self_attn.v_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
110
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
111
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
112
+ "model.layers.14.mlp.down_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
113
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
114
+ "model.layers.14.mlp.gate_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
115
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
116
+ "model.layers.14.mlp.up_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
117
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
118
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
119
+ "model.layers.14.self_attn.k_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
120
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
121
+ "model.layers.14.self_attn.o_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
122
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
123
+ "model.layers.14.self_attn.q_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
124
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00005.bin",
125
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
126
+ "model.layers.14.self_attn.v_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
127
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
128
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
129
+ "model.layers.15.mlp.down_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
130
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
131
+ "model.layers.15.mlp.gate_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
132
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
133
+ "model.layers.15.mlp.up_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
134
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
135
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
136
+ "model.layers.15.self_attn.k_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
137
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
138
+ "model.layers.15.self_attn.o_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
139
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
140
+ "model.layers.15.self_attn.q_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
141
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00005.bin",
142
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
143
+ "model.layers.15.self_attn.v_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
144
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
145
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
146
+ "model.layers.16.mlp.down_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
147
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
148
+ "model.layers.16.mlp.gate_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
149
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
150
+ "model.layers.16.mlp.up_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
151
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
152
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
153
+ "model.layers.16.self_attn.k_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
154
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
155
+ "model.layers.16.self_attn.o_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
156
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
157
+ "model.layers.16.self_attn.q_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
158
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00005.bin",
159
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
160
+ "model.layers.16.self_attn.v_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
161
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
162
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
163
+ "model.layers.17.mlp.down_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
164
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
165
+ "model.layers.17.mlp.gate_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
166
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
167
+ "model.layers.17.mlp.up_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
168
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
169
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
170
+ "model.layers.17.self_attn.k_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
171
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
172
+ "model.layers.17.self_attn.o_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
173
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
174
+ "model.layers.17.self_attn.q_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
175
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00005.bin",
176
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
177
+ "model.layers.17.self_attn.v_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
178
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
179
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
180
+ "model.layers.18.mlp.down_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
181
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
182
+ "model.layers.18.mlp.gate_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
183
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
184
+ "model.layers.18.mlp.up_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
185
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
186
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
187
+ "model.layers.18.self_attn.k_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
188
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
189
+ "model.layers.18.self_attn.o_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
190
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
191
+ "model.layers.18.self_attn.q_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
192
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00005.bin",
193
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
194
+ "model.layers.18.self_attn.v_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
195
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
196
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
197
+ "model.layers.19.mlp.down_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
198
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
199
+ "model.layers.19.mlp.gate_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
200
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
201
+ "model.layers.19.mlp.up_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
202
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
203
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
204
+ "model.layers.19.self_attn.k_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
205
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
206
+ "model.layers.19.self_attn.o_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
207
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
208
+ "model.layers.19.self_attn.q_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
209
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00005.bin",
210
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
211
+ "model.layers.19.self_attn.v_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
212
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
213
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
214
+ "model.layers.2.mlp.down_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
215
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
216
+ "model.layers.2.mlp.gate_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
217
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
218
+ "model.layers.2.mlp.up_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
219
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
220
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
221
+ "model.layers.2.self_attn.k_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
222
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
223
+ "model.layers.2.self_attn.o_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
224
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
225
+ "model.layers.2.self_attn.q_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
226
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00005.bin",
227
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
228
+ "model.layers.2.self_attn.v_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
229
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
230
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
231
+ "model.layers.20.mlp.down_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
232
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
233
+ "model.layers.20.mlp.gate_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
234
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
235
+ "model.layers.20.mlp.up_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
236
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
237
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
238
+ "model.layers.20.self_attn.k_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
239
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
240
+ "model.layers.20.self_attn.o_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
241
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
242
+ "model.layers.20.self_attn.q_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
243
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00005.bin",
244
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
245
+ "model.layers.20.self_attn.v_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
246
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
247
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
248
+ "model.layers.21.mlp.down_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
249
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
250
+ "model.layers.21.mlp.gate_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
251
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
252
+ "model.layers.21.mlp.up_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
253
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
254
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
255
+ "model.layers.21.self_attn.k_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
256
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
257
+ "model.layers.21.self_attn.o_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
258
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
259
+ "model.layers.21.self_attn.q_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
260
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00005.bin",
261
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
262
+ "model.layers.21.self_attn.v_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
263
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
264
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
265
+ "model.layers.22.mlp.down_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
266
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
267
+ "model.layers.22.mlp.gate_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
268
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
269
+ "model.layers.22.mlp.up_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
270
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
271
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
272
+ "model.layers.22.self_attn.k_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
273
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
274
+ "model.layers.22.self_attn.o_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
275
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
276
+ "model.layers.22.self_attn.q_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
277
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00005.bin",
278
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
279
+ "model.layers.22.self_attn.v_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
280
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
281
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
282
+ "model.layers.23.mlp.down_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
283
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
284
+ "model.layers.23.mlp.gate_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
285
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
286
+ "model.layers.23.mlp.up_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
287
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
288
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
289
+ "model.layers.23.self_attn.k_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
290
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
291
+ "model.layers.23.self_attn.o_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
292
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
293
+ "model.layers.23.self_attn.q_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
294
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00005.bin",
295
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
296
+ "model.layers.23.self_attn.v_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
297
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
298
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
299
+ "model.layers.24.mlp.down_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
300
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
301
+ "model.layers.24.mlp.gate_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
302
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
303
+ "model.layers.24.mlp.up_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
304
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
305
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
306
+ "model.layers.24.self_attn.k_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
307
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
308
+ "model.layers.24.self_attn.o_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
309
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
310
+ "model.layers.24.self_attn.q_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
311
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00005.bin",
312
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
313
+ "model.layers.24.self_attn.v_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
314
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
315
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
316
+ "model.layers.25.mlp.down_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
317
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
318
+ "model.layers.25.mlp.gate_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
319
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
320
+ "model.layers.25.mlp.up_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
321
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
322
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
323
+ "model.layers.25.self_attn.k_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
324
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
325
+ "model.layers.25.self_attn.o_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
326
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
327
+ "model.layers.25.self_attn.q_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
328
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00005.bin",
329
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
330
+ "model.layers.25.self_attn.v_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
331
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
332
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
333
+ "model.layers.26.mlp.down_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
334
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
335
+ "model.layers.26.mlp.gate_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
336
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
337
+ "model.layers.26.mlp.up_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
338
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
339
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
340
+ "model.layers.26.self_attn.k_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
341
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
342
+ "model.layers.26.self_attn.o_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
343
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
344
+ "model.layers.26.self_attn.q_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
345
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00005.bin",
346
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
347
+ "model.layers.26.self_attn.v_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
348
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
349
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
350
+ "model.layers.27.mlp.down_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
351
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
352
+ "model.layers.27.mlp.gate_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
353
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
354
+ "model.layers.27.mlp.up_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
355
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
356
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
357
+ "model.layers.27.self_attn.k_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
358
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
359
+ "model.layers.27.self_attn.o_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
360
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
361
+ "model.layers.27.self_attn.q_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
362
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00005.bin",
363
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
364
+ "model.layers.27.self_attn.v_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
365
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
366
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
367
+ "model.layers.28.mlp.down_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
368
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
369
+ "model.layers.28.mlp.gate_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
370
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
371
+ "model.layers.28.mlp.up_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
372
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
373
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
374
+ "model.layers.28.self_attn.k_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
375
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
376
+ "model.layers.28.self_attn.o_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
377
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
378
+ "model.layers.28.self_attn.q_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
379
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00005.bin",
380
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
381
+ "model.layers.28.self_attn.v_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
382
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
383
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
384
+ "model.layers.29.mlp.down_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
385
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
386
+ "model.layers.29.mlp.gate_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
387
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
388
+ "model.layers.29.mlp.up_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
389
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
390
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
391
+ "model.layers.29.self_attn.k_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
392
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
393
+ "model.layers.29.self_attn.o_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
394
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
395
+ "model.layers.29.self_attn.q_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
396
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00005.bin",
397
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
398
+ "model.layers.29.self_attn.v_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
399
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
400
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
401
+ "model.layers.3.mlp.down_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
402
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
403
+ "model.layers.3.mlp.gate_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
404
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
405
+ "model.layers.3.mlp.up_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
406
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
407
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
408
+ "model.layers.3.self_attn.k_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
409
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
410
+ "model.layers.3.self_attn.o_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
411
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
412
+ "model.layers.3.self_attn.q_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
413
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00005.bin",
414
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
415
+ "model.layers.3.self_attn.v_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
416
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
417
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
418
+ "model.layers.30.mlp.down_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
419
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
420
+ "model.layers.30.mlp.gate_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
421
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
422
+ "model.layers.30.mlp.up_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
423
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
424
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
425
+ "model.layers.30.self_attn.k_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
426
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
427
+ "model.layers.30.self_attn.o_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
428
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
429
+ "model.layers.30.self_attn.q_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
430
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00005.bin",
431
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
432
+ "model.layers.30.self_attn.v_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
433
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
434
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
435
+ "model.layers.31.mlp.down_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
436
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
437
+ "model.layers.31.mlp.gate_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
438
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
439
+ "model.layers.31.mlp.up_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
440
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
441
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
442
+ "model.layers.31.self_attn.k_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
443
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
444
+ "model.layers.31.self_attn.o_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
445
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
446
+ "model.layers.31.self_attn.q_proj.weight_scale": "pytorch_model-00003-of-00005.bin",
447
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00005.bin",
448
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
449
+ "model.layers.31.self_attn.v_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
450
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
451
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
452
+ "model.layers.32.mlp.down_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
453
+ "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
454
+ "model.layers.32.mlp.gate_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
455
+ "model.layers.32.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
456
+ "model.layers.32.mlp.up_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
457
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
458
+ "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
459
+ "model.layers.32.self_attn.k_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
460
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
461
+ "model.layers.32.self_attn.o_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
462
+ "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
463
+ "model.layers.32.self_attn.q_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
464
+ "model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00005.bin",
465
+ "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
466
+ "model.layers.32.self_attn.v_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
467
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
468
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
469
+ "model.layers.33.mlp.down_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
470
+ "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
471
+ "model.layers.33.mlp.gate_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
472
+ "model.layers.33.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
473
+ "model.layers.33.mlp.up_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
474
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
475
+ "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
476
+ "model.layers.33.self_attn.k_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
477
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
478
+ "model.layers.33.self_attn.o_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
479
+ "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
480
+ "model.layers.33.self_attn.q_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
481
+ "model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00005.bin",
482
+ "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
483
+ "model.layers.33.self_attn.v_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
484
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
485
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
486
+ "model.layers.34.mlp.down_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
487
+ "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
488
+ "model.layers.34.mlp.gate_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
489
+ "model.layers.34.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
490
+ "model.layers.34.mlp.up_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
491
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
492
+ "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
493
+ "model.layers.34.self_attn.k_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
494
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
495
+ "model.layers.34.self_attn.o_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
496
+ "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
497
+ "model.layers.34.self_attn.q_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
498
+ "model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00005.bin",
499
+ "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
500
+ "model.layers.34.self_attn.v_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
501
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
502
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
503
+ "model.layers.35.mlp.down_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
504
+ "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
505
+ "model.layers.35.mlp.gate_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
506
+ "model.layers.35.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
507
+ "model.layers.35.mlp.up_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
508
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
509
+ "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
510
+ "model.layers.35.self_attn.k_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
511
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
512
+ "model.layers.35.self_attn.o_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
513
+ "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
514
+ "model.layers.35.self_attn.q_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
515
+ "model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00005.bin",
516
+ "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
517
+ "model.layers.35.self_attn.v_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
518
+ "model.layers.36.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
519
+ "model.layers.36.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
520
+ "model.layers.36.mlp.down_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
521
+ "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
522
+ "model.layers.36.mlp.gate_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
523
+ "model.layers.36.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
524
+ "model.layers.36.mlp.up_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
525
+ "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
526
+ "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
527
+ "model.layers.36.self_attn.k_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
528
+ "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
529
+ "model.layers.36.self_attn.o_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
530
+ "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
531
+ "model.layers.36.self_attn.q_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
532
+ "model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00005.bin",
533
+ "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
534
+ "model.layers.36.self_attn.v_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
535
+ "model.layers.37.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
536
+ "model.layers.37.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
537
+ "model.layers.37.mlp.down_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
538
+ "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
539
+ "model.layers.37.mlp.gate_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
540
+ "model.layers.37.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
541
+ "model.layers.37.mlp.up_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
542
+ "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
543
+ "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
544
+ "model.layers.37.self_attn.k_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
545
+ "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
546
+ "model.layers.37.self_attn.o_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
547
+ "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
548
+ "model.layers.37.self_attn.q_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
549
+ "model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00005.bin",
550
+ "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
551
+ "model.layers.37.self_attn.v_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
552
+ "model.layers.38.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
553
+ "model.layers.38.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
554
+ "model.layers.38.mlp.down_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
555
+ "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
556
+ "model.layers.38.mlp.gate_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
557
+ "model.layers.38.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
558
+ "model.layers.38.mlp.up_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
559
+ "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
560
+ "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
561
+ "model.layers.38.self_attn.k_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
562
+ "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
563
+ "model.layers.38.self_attn.o_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
564
+ "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
565
+ "model.layers.38.self_attn.q_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
566
+ "model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00005.bin",
567
+ "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
568
+ "model.layers.38.self_attn.v_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
569
+ "model.layers.39.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
570
+ "model.layers.39.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
571
+ "model.layers.39.mlp.down_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
572
+ "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
573
+ "model.layers.39.mlp.gate_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
574
+ "model.layers.39.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
575
+ "model.layers.39.mlp.up_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
576
+ "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
577
+ "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
578
+ "model.layers.39.self_attn.k_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
579
+ "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
580
+ "model.layers.39.self_attn.o_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
581
+ "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
582
+ "model.layers.39.self_attn.q_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
583
+ "model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00005.bin",
584
+ "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
585
+ "model.layers.39.self_attn.v_proj.weight_scale": "pytorch_model-00004-of-00005.bin",
586
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
587
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
588
+ "model.layers.4.mlp.down_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
589
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
590
+ "model.layers.4.mlp.gate_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
591
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
592
+ "model.layers.4.mlp.up_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
593
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
594
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
595
+ "model.layers.4.self_attn.k_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
596
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
597
+ "model.layers.4.self_attn.o_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
598
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
599
+ "model.layers.4.self_attn.q_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
600
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00005.bin",
601
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
602
+ "model.layers.4.self_attn.v_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
603
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
604
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
605
+ "model.layers.5.mlp.down_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
606
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
607
+ "model.layers.5.mlp.gate_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
608
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
609
+ "model.layers.5.mlp.up_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
610
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
611
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
612
+ "model.layers.5.self_attn.k_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
613
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
614
+ "model.layers.5.self_attn.o_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
615
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
616
+ "model.layers.5.self_attn.q_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
617
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00005.bin",
618
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
619
+ "model.layers.5.self_attn.v_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
620
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
621
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
622
+ "model.layers.6.mlp.down_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
623
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
624
+ "model.layers.6.mlp.gate_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
625
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
626
+ "model.layers.6.mlp.up_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
627
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
628
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
629
+ "model.layers.6.self_attn.k_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
630
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
631
+ "model.layers.6.self_attn.o_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
632
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
633
+ "model.layers.6.self_attn.q_proj.weight_scale": "pytorch_model-00001-of-00005.bin",
634
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00005.bin",
635
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
636
+ "model.layers.6.self_attn.v_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
637
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
638
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
639
+ "model.layers.7.mlp.down_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
640
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
641
+ "model.layers.7.mlp.gate_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
642
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
643
+ "model.layers.7.mlp.up_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
644
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
645
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
646
+ "model.layers.7.self_attn.k_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
647
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
648
+ "model.layers.7.self_attn.o_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
649
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
650
+ "model.layers.7.self_attn.q_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
651
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00005.bin",
652
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
653
+ "model.layers.7.self_attn.v_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
654
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
655
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
656
+ "model.layers.8.mlp.down_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
657
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
658
+ "model.layers.8.mlp.gate_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
659
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
660
+ "model.layers.8.mlp.up_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
661
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
662
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
663
+ "model.layers.8.self_attn.k_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
664
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
665
+ "model.layers.8.self_attn.o_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
666
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
667
+ "model.layers.8.self_attn.q_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
668
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00005.bin",
669
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
670
+ "model.layers.8.self_attn.v_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
671
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
672
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
673
+ "model.layers.9.mlp.down_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
674
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
675
+ "model.layers.9.mlp.gate_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
676
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
677
+ "model.layers.9.mlp.up_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
678
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
679
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
680
+ "model.layers.9.self_attn.k_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
681
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
682
+ "model.layers.9.self_attn.o_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
683
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
684
+ "model.layers.9.self_attn.q_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
685
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00005.bin",
686
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
687
+ "model.layers.9.self_attn.v_proj.weight_scale": "pytorch_model-00002-of-00005.bin",
688
+ "model.norm.weight": "pytorch_model-00004-of-00005.bin"
689
+ }
690
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "model_max_length": 1000000000000000019884624838656,
4
+ "tokenizer_class": "PreTrainedTokenizerFast"
5
+ }