End of training
Browse files- README.md +76 -0
- logs/events.out.tfevents.1712159779.042df3143322.15924.1 +2 -2
- logs/events.out.tfevents.1712160565.042df3143322.15924.2 +3 -0
- merges.txt +0 -0
- model.safetensors +1 -1
- preprocessor_config.json +43 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +78 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: SCUT-DLVCLab/lilt-roberta-en-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: lilt-en-funsd
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# lilt-en-funsd
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.4190
|
19 |
+
- Answer: {'precision': 0.8649592549476135, 'recall': 0.9094247246022031, 'f1': 0.886634844868735, 'number': 817}
|
20 |
+
- Header: {'precision': 0.6597938144329897, 'recall': 0.5378151260504201, 'f1': 0.5925925925925926, 'number': 119}
|
21 |
+
- Question: {'precision': 0.8840970350404312, 'recall': 0.9136490250696379, 'f1': 0.8986301369863015, 'number': 1077}
|
22 |
+
- Overall Precision: 0.8656
|
23 |
+
- Overall Recall: 0.8897
|
24 |
+
- Overall F1: 0.8775
|
25 |
+
- Overall Accuracy: 0.8041
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 5e-05
|
45 |
+
- train_batch_size: 8
|
46 |
+
- eval_batch_size: 8
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- training_steps: 2500
|
51 |
+
- mixed_precision_training: Native AMP
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
56 |
+
|:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
57 |
+
| 0.4199 | 10.53 | 200 | 1.0303 | {'precision': 0.8458904109589042, 'recall': 0.9069767441860465, 'f1': 0.8753691671588896, 'number': 817} | {'precision': 0.4470588235294118, 'recall': 0.6386554621848739, 'f1': 0.5259515570934256, 'number': 119} | {'precision': 0.8797653958944281, 'recall': 0.8356545961002786, 'f1': 0.8571428571428572, 'number': 1077} | 0.8299 | 0.8530 | 0.8413 | 0.7784 |
|
58 |
+
| 0.0485 | 21.05 | 400 | 1.3395 | {'precision': 0.8127705627705628, 'recall': 0.9192166462668299, 'f1': 0.8627225732337737, 'number': 817} | {'precision': 0.6463414634146342, 'recall': 0.44537815126050423, 'f1': 0.527363184079602, 'number': 119} | {'precision': 0.8720292504570384, 'recall': 0.8857938718662952, 'f1': 0.878857669276831, 'number': 1077} | 0.8371 | 0.8733 | 0.8549 | 0.7851 |
|
59 |
+
| 0.0154 | 31.58 | 600 | 1.2980 | {'precision': 0.8578034682080925, 'recall': 0.9082007343941249, 'f1': 0.8822829964328182, 'number': 817} | {'precision': 0.5742574257425742, 'recall': 0.48739495798319327, 'f1': 0.5272727272727273, 'number': 119} | {'precision': 0.87322695035461, 'recall': 0.914577530176416, 'f1': 0.8934240362811792, 'number': 1077} | 0.8524 | 0.8867 | 0.8692 | 0.8145 |
|
60 |
+
| 0.0076 | 42.11 | 800 | 1.3862 | {'precision': 0.8296703296703297, 'recall': 0.9241126070991432, 'f1': 0.8743485813549509, 'number': 817} | {'precision': 0.6206896551724138, 'recall': 0.453781512605042, 'f1': 0.5242718446601942, 'number': 119} | {'precision': 0.8699472759226714, 'recall': 0.9192200557103064, 'f1': 0.8939051918735892, 'number': 1077} | 0.8426 | 0.8937 | 0.8674 | 0.8016 |
|
61 |
+
| 0.0055 | 52.63 | 1000 | 1.4190 | {'precision': 0.8649592549476135, 'recall': 0.9094247246022031, 'f1': 0.886634844868735, 'number': 817} | {'precision': 0.6597938144329897, 'recall': 0.5378151260504201, 'f1': 0.5925925925925926, 'number': 119} | {'precision': 0.8840970350404312, 'recall': 0.9136490250696379, 'f1': 0.8986301369863015, 'number': 1077} | 0.8656 | 0.8897 | 0.8775 | 0.8041 |
|
62 |
+
| 0.0026 | 63.16 | 1200 | 1.5891 | {'precision': 0.8293478260869566, 'recall': 0.9339045287637698, 'f1': 0.8785261945883708, 'number': 817} | {'precision': 0.5922330097087378, 'recall': 0.5126050420168067, 'f1': 0.5495495495495496, 'number': 119} | {'precision': 0.9082217973231358, 'recall': 0.8820798514391829, 'f1': 0.8949599623174752, 'number': 1077} | 0.8574 | 0.8813 | 0.8692 | 0.8058 |
|
63 |
+
| 0.0027 | 73.68 | 1400 | 1.6258 | {'precision': 0.8331466965285554, 'recall': 0.9106487148102815, 'f1': 0.8701754385964913, 'number': 817} | {'precision': 0.5833333333333334, 'recall': 0.5294117647058824, 'f1': 0.5550660792951542, 'number': 119} | {'precision': 0.8783542039355993, 'recall': 0.9117920148560817, 'f1': 0.894760820045558, 'number': 1077} | 0.8443 | 0.8887 | 0.8659 | 0.7927 |
|
64 |
+
| 0.0009 | 84.21 | 1600 | 1.6324 | {'precision': 0.8621495327102804, 'recall': 0.9033047735618115, 'f1': 0.8822474596533174, 'number': 817} | {'precision': 0.6, 'recall': 0.5294117647058824, 'f1': 0.5625, 'number': 119} | {'precision': 0.8733153638814016, 'recall': 0.9025069637883009, 'f1': 0.8876712328767123, 'number': 1077} | 0.8549 | 0.8808 | 0.8676 | 0.7950 |
|
65 |
+
| 0.0007 | 94.74 | 1800 | 1.8058 | {'precision': 0.8278145695364238, 'recall': 0.9179926560587516, 'f1': 0.8705745792222868, 'number': 817} | {'precision': 0.5714285714285714, 'recall': 0.5042016806722689, 'f1': 0.5357142857142857, 'number': 119} | {'precision': 0.9029495718363464, 'recall': 0.8811513463324049, 'f1': 0.8919172932330827, 'number': 1077} | 0.8531 | 0.8738 | 0.8633 | 0.7927 |
|
66 |
+
| 0.0005 | 105.26 | 2000 | 1.8281 | {'precision': 0.8543799772468714, 'recall': 0.9192166462668299, 'f1': 0.8856132075471698, 'number': 817} | {'precision': 0.5238095238095238, 'recall': 0.5546218487394958, 'f1': 0.5387755102040817, 'number': 119} | {'precision': 0.9050279329608939, 'recall': 0.9025069637883009, 'f1': 0.903765690376569, 'number': 1077} | 0.8605 | 0.8887 | 0.8744 | 0.7915 |
|
67 |
+
| 0.0004 | 115.79 | 2200 | 1.6623 | {'precision': 0.8643867924528302, 'recall': 0.8971848225214198, 'f1': 0.8804804804804804, 'number': 817} | {'precision': 0.5426356589147286, 'recall': 0.5882352941176471, 'f1': 0.5645161290322581, 'number': 119} | {'precision': 0.8898916967509025, 'recall': 0.9155060352831941, 'f1': 0.9025171624713959, 'number': 1077} | 0.8580 | 0.8887 | 0.8731 | 0.8055 |
|
68 |
+
| 0.0003 | 126.32 | 2400 | 1.7066 | {'precision': 0.8649592549476135, 'recall': 0.9094247246022031, 'f1': 0.886634844868735, 'number': 817} | {'precision': 0.5689655172413793, 'recall': 0.5546218487394958, 'f1': 0.5617021276595745, 'number': 119} | {'precision': 0.8988970588235294, 'recall': 0.9080779944289693, 'f1': 0.9034642032332563, 'number': 1077} | 0.8662 | 0.8877 | 0.8768 | 0.8010 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.39.3
|
74 |
+
- Pytorch 2.2.1+cu121
|
75 |
+
- Datasets 2.18.0
|
76 |
+
- Tokenizers 0.15.2
|
logs/events.out.tfevents.1712159779.042df3143322.15924.1
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de94f2dddd3d8b697c73b9f89fb3fb2be0394b1dc49beafc053604e97203d025
|
3 |
+
size 13938
|
logs/events.out.tfevents.1712160565.042df3143322.15924.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c87966d062d69f7bf1539b690593b0ceb23ee29ea52a63c05f724a6cbaf8c85
|
3 |
+
size 592
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 520727564
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbc35a4425963cf8ef1eb31e776b7ab2c91a40d12b0930f7fe7a4ca31f229b16
|
3 |
size 520727564
|
preprocessor_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_valid_processor_keys": [
|
3 |
+
"images",
|
4 |
+
"do_resize",
|
5 |
+
"size",
|
6 |
+
"resample",
|
7 |
+
"do_rescale",
|
8 |
+
"rescale_factor",
|
9 |
+
"do_normalize",
|
10 |
+
"image_mean",
|
11 |
+
"image_std",
|
12 |
+
"apply_ocr",
|
13 |
+
"ocr_lang",
|
14 |
+
"tesseract_config",
|
15 |
+
"return_tensors",
|
16 |
+
"data_format",
|
17 |
+
"input_data_format"
|
18 |
+
],
|
19 |
+
"apply_ocr": true,
|
20 |
+
"do_normalize": true,
|
21 |
+
"do_rescale": true,
|
22 |
+
"do_resize": true,
|
23 |
+
"image_mean": [
|
24 |
+
0.5,
|
25 |
+
0.5,
|
26 |
+
0.5
|
27 |
+
],
|
28 |
+
"image_processor_type": "LayoutLMv3FeatureExtractor",
|
29 |
+
"image_std": [
|
30 |
+
0.5,
|
31 |
+
0.5,
|
32 |
+
0.5
|
33 |
+
],
|
34 |
+
"ocr_lang": null,
|
35 |
+
"processor_class": "LayoutLMv3Processor",
|
36 |
+
"resample": 2,
|
37 |
+
"rescale_factor": 0.00392156862745098,
|
38 |
+
"size": {
|
39 |
+
"height": 224,
|
40 |
+
"width": 224
|
41 |
+
},
|
42 |
+
"tesseract_config": ""
|
43 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": true,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": true,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"50264": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": true,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "<s>",
|
48 |
+
"cls_token_box": [
|
49 |
+
0,
|
50 |
+
0,
|
51 |
+
0,
|
52 |
+
0
|
53 |
+
],
|
54 |
+
"eos_token": "</s>",
|
55 |
+
"errors": "replace",
|
56 |
+
"mask_token": "<mask>",
|
57 |
+
"model_max_length": 512,
|
58 |
+
"only_label_first_subword": true,
|
59 |
+
"pad_token": "<pad>",
|
60 |
+
"pad_token_box": [
|
61 |
+
0,
|
62 |
+
0,
|
63 |
+
0,
|
64 |
+
0
|
65 |
+
],
|
66 |
+
"pad_token_label": -100,
|
67 |
+
"processor_class": "LayoutLMv3Processor",
|
68 |
+
"sep_token": "</s>",
|
69 |
+
"sep_token_box": [
|
70 |
+
0,
|
71 |
+
0,
|
72 |
+
0,
|
73 |
+
0
|
74 |
+
],
|
75 |
+
"tokenizer_class": "LayoutLMv3Tokenizer",
|
76 |
+
"trim_offsets": true,
|
77 |
+
"unk_token": "<unk>"
|
78 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|