sryu1 commited on
Commit
13988cf
1 Parent(s): 947fa33

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1482.74 +/- 360.65
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4caa74683d24611608afad1b6e0909b575ca8e0e76755812150836b5fe82432b
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3e78796f70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3e7879c040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3e7879c0d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3e7879c160>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3e7879c1f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3e7879c280>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3e7879c310>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3e7879c3a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3e7879c430>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3e7879c4c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3e7879c550>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3e7879c5e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f3e78790cc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674115009970026560,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGgY4j9amYs/Xsojvx4tkr+KO4m+7ZdEvWxcFkD1O6e/V86nv/v4jj1BUsK/3OHiPkNRBz+7i6e/Jplsvx5wUT4pNI6/P6NvP3ylqT6CqXm/qhE5v2uQwD8YSFi9I1Wqv/6HWr/Ne7q/LiCiPsi1xL+15bg+HJuTPzSmQ7/7q7s+E1MTQJjv8T9su38/FcgOP8ula78+5xvAsZs5P9fABsB+frc/HfKEu6Vt+L89CaA+0dpOP35ne8Bnvc8+bL+XvrMLXj9DagLAF3KpvTwXUD/+h1q/FrcvPy4goj6GlCY/hdhvvl/mR78f0Tk/ERQuP1cGAb6/7No+j9rGvYKBOr+F+7g/CGe1uksS377CZeO+kFtGPadtHz5CIQ4/A6sPPxTo9z9giD6/G/nVPuCyqjxsl40+9AMXv0uFJz/BbAM//odavxa3Lz8uIKI+hpQmPw+VBj7RQ42//nM2P/S6Ij4o0wa/LIOPPvB4Wj5SQUq/tjy5P09+t7yi7yO+euoawJ8ijr9G6Fc+1aolv2LEMj557AlAbxYiv+7/3T4dN5a8b7L5PkKXzb74XIk/uG/BPv6HWr8Wty8/LiCiPsi1xL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA6fo82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARs6RvQAAAACkqP+/AAAAANrjr7wAAAAAlBL/PwAAAAAc8/s9AAAAAHCM6z8AAAAA9YFMvAAAAAB4fOG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvAqhtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD93zz0AAAAAYYf8vwAAAAB2Mdm9AAAAAKTA5D8AAAAA9YfxPQAAAACE8us/AAAAAMHB6z0AAAAAlLXbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIddO7cAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBCLg8+AAAAAKvF578AAAAA84kKvgAAAADSeN0/AAAAAABYtb0AAAAA8L75PwAAAAA/xfo9AAAAAAdg4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASucU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWUdWvQAAAABsxea/AAAAAEcUzD0AAAAAaWzfPwAAAAA8aBA+AAAAAMSc7z8AAAAAAaEZPQAAAAA1lOu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKAKfTYNAkeMAWyUTegDjAF0lEdApkEl8Z1mrnV9lChoBkdAn+3AXqJMx2gHTegDaAhHQKZC2ALApKB1fZQoaAZHQKA33YL9deJoB03oA2gIR0CmSH59NN8FdX2UKGgGR0CftVh3qzJIaAdN6ANoCEdApkiDxZuAJHV9lChoBkdAnO4KURnOB2gHTegDaAhHQKZNDFGXokl1fZQoaAZHQJ44/YDklu5oB03oA2gIR0CmTsFs54nndX2UKGgGR0CZYnmce8wpaAdN6ANoCEdAplR8jcEeQ3V9lChoBkdAnRW16zE74mgHTegDaAhHQKZUge7tiQV1fZQoaAZHQJhEKHbh3q1oB03oA2gIR0CmWQYNy5qedX2UKGgGR0CW8h1oxpL3aAdN6ANoCEdAplq2OS4e93V9lChoBkdAkxKTgQ6IWWgHTegDaAhHQKZgWYsNDtx1fZQoaAZHQJDQD3YcvM9oB03oA2gIR0CmYF8fms/6dX2UKGgGR0CUwEEZR8+iaAdN6ANoCEdApmTXbM5fdHV9lChoBkdAjMQMT37DVGgHTegDaAhHQKZmhqDbrTp1fZQoaAZHQI7SRGBnSORoB03oA2gIR0CmbA3mvGIbdX2UKGgGR0CM2qC/XXiBaAdN6ANoCEdApmwTXg9/0HV9lChoBkdAkXTmNFSbY2gHTegDaAhHQKZwrozvZyx1fZQoaAZHQIw661eBxxVoB03oA2gIR0Cmcmabvw3HdX2UKGgGR0CQ3NLNwBHTaAdN6ANoCEdApngHGyX2NHV9lChoBkdAiikRFAmiQGgHTegDaAhHQKZ4DJ9y9251fZQoaAZHQJPGBJPIn0FoB03oA2gIR0CmfI5hz/6wdX2UKGgGR0CTjsBwuM/AaAdN6ANoCEdApn5DSApazXV9lChoBkdAk4m/CVKPGWgHTegDaAhHQKaECZa3Zwp1fZQoaAZHQJZCtMvh60JoB03oA2gIR0CmhBJvo/zKdX2UKGgGR0CVesgNgBtDaAdN6ANoCEdApoiX60pmVnV9lChoBkdAlANjCcf/3mgHTegDaAhHQKaKSPjn3cp1fZQoaAZHQJVlZH4GlhxoB03oA2gIR0Cmj+R8c+7ldX2UKGgGR0CVG1BQemvXaAdN6ANoCEdApo/qXyAhCHV9lChoBkdAl5gifg75mGgHTegDaAhHQKaUWlIEr5J1fZQoaAZHQJTrKAavRqpoB03oA2gIR0CmlhSuIRAbdX2UKGgGR0CWmgtmcvugaAdN6ANoCEdAppuq44Ia+HV9lChoBkdAluJC4axX4mgHTegDaAhHQKabsG5c1O11fZQoaAZHQJVb2Fev6j5oB03oA2gIR0CmoBY1YQrddX2UKGgGR0CSAU+jdpIuaAdN6ANoCEdApqG/hwVCX3V9lChoBkdAlCVZ40Mw12gHTegDaAhHQKanaJ79hql1fZQoaAZHQJZQygezUqhoB03oA2gIR0Cmp25pJwsHdX2UKGgGR0CY9HffoA4oaAdN6ANoCEdApqwLh5xBFHV9lChoBkdAmJAabF0gbWgHTegDaAhHQKattaVUuL91fZQoaAZHQJhgx9NN8E5oB03oA2gIR0Cms2QdS2pidX2UKGgGR0CWyOek56t1aAdN6ANoCEdAprNqHARChXV9lChoBkdAmlHnIlt0m2gHTegDaAhHQKa37Y4ACGN1fZQoaAZHQJiAKo1k1/FoB03oA2gIR0CmuaKBEroXdX2UKGgGR0CV7ljs2NvPaAdN6ANoCEdApr9hwwTM7nV9lChoBkdAlo6C2hIvrWgHTegDaAhHQKa/Z7rLQol1fZQoaAZHQJKOII+nqFBoB03oA2gIR0Cmw+QTmGM5dX2UKGgGR0CV3OfQ8fV7aAdN6ANoCEdApsWY2VE/jnV9lChoBkdAlDd0078vVWgHTegDaAhHQKbLL/WlMyt1fZQoaAZHQJYjTOC5EtxoB03oA2gIR0CmyzXh4t6HdX2UKGgGR0CUKakRzzVdaAdN6ANoCEdAps/TmnwXqXV9lChoBkdAk4Iz0lJHy2gHTegDaAhHQKbRi9nscAB1fZQoaAZHQJYExSZSeiBoB03oA2gIR0Cm1ymqxTsIdX2UKGgGR0CWCHOZLIxQaAdN6ANoCEdAptcvnZCfH3V9lChoBkdAlm4mG7Bfr2gHTegDaAhHQKbbtsvZh8Z1fZQoaAZHQJzYrpC8e0ZoB03oA2gIR0Cm3WYHxBmgdX2UKGgGR0Ca24QZ4wAVaAdN6ANoCEdApuMG3OObRXV9lChoBkdAm6Efio86m2gHTegDaAhHQKbjDMnJDE51fZQoaAZHQJeuHaVUuL9oB03oA2gIR0Cm56b1AZ88dX2UKGgGR0Caum/uLJjlaAdN6ANoCEdApulnN7jT8nV9lChoBkdAl6Q7uhK15WgHTegDaAhHQKbvEm3vx6R1fZQoaAZHQJhhynO0LMNoB03oA2gIR0Cm7xg2qDK6dX2UKGgGR0CVpfbedkJ8aAdN6ANoCEdApvOvR/mT1XV9lChoBkdAlNjb2USqVGgHTegDaAhHQKb1bd8iOed1fZQoaAZHQJjU4ZLqUvBoB03oA2gIR0Cm+x1SwW30dX2UKGgGR0CXmJ/CZWq+aAdN6ANoCEdApvsi68QI2XV9lChoBkdAlnKnvMKTjmgHTegDaAhHQKb/wIAwPAh1fZQoaAZHQJlk7mOlwcZoB03oA2gIR0CnAW5WRzRydX2UKGgGR0CXk+VFx4puaAdN6ANoCEdApwcEk0JnhHV9lChoBkdAmOBzSofjj2gHTegDaAhHQKcHCevIOpd1fZQoaAZHQJu7R9QXQ+loB03oA2gIR0CnC523Sa3JdX2UKGgGR0CWqn8SPEKmaAdN6ANoCEdApw1NDSgGr3V9lChoBkdAl+MGapgkT2gHTegDaAhHQKcS/65XlsB1fZQoaAZHQJXDdGWldkdoB03oA2gIR0CnEwU/GEPEdX2UKGgGR0CWI44ZuQ6qaAdN6ANoCEdApxl3Yao/A3V9lChoBkdAmL86lYU342gHTegDaAhHQKcb7u2JBPd1fZQoaAZHQJi8UtOEdvNoB03oA2gIR0CnIZKtozvadX2UKGgGR0CU4RBu4wyqaAdN6ANoCEdApyGYOQQtjHV9lChoBkdAmA1JwsGxEGgHTegDaAhHQKcmSbMHKOl1fZQoaAZHQJaTQLkS26VoB03oA2gIR0CnKBMZxaPkdX2UKGgGR0CXO92dNFjNaAdN6ANoCEdApy3cCmuTzXV9lChoBkdAlqp1WjoIOmgHTegDaAhHQKct4bpeNT91fZQoaAZHQJiHzCWNWENoB03oA2gIR0CnMmzposZpdX2UKGgGR0CWbAXUYsNEaAdN6ANoCEdApzQgAuIykHV9lChoBkdAmV/hE4Nqg2gHTegDaAhHQKc52QFLWZt1fZQoaAZHQJmyTb1yvLZoB03oA2gIR0CnOd6IWP92dX2UKGgGR0CXcerK/20zaAdN6ANoCEdApz5omReTmnV9lChoBkdAmpIEOEug6GgHTegDaAhHQKdAFtuUD+11fZQoaAZHQJaWrEKmbb1oB03oA2gIR0CnRbS/bj95dX2UKGgGR0Cah5KYiPhiaAdN6ANoCEdAp0W6Q1aW5nV9lChoBkdAmZTncL0BfmgHTegDaAhHQKdKNm4Ajpt1fZQoaAZHQJbXfXVbzK9oB03oA2gIR0CnS+ryUcGUdX2UKGgGR0CWQrdUbT+eaAdN6ANoCEdAp1F6SX+l03V9lChoBkdAmkgrj94u9WgHTegDaAhHQKdRf7655JN1fZQoaAZHQJluR6Ww/xFoB03oA2gIR0CnVf/VAiV0dX2UKGgGR0CXlu23azu4aAdN6ANoCEdAp1e1bu+h5HV9lChoBkdAmPcLZBcAzmgHTegDaAhHQKddQQL/jsF1fZQoaAZHQJiKDwXqJMxoB03oA2gIR0CnXUasIVuadX2UKGgGR0CaA4KVY6n0aAdN6ANoCEdAp2HlFnZkCnV9lChoBkdAmX8yfpUxVWgHTegDaAhHQKdjtHsC1Z11fZQoaAZHQJmfTgFX7tRoB03oA2gIR0CnaWQZXMhYdX2UKGgGR0CZb6tzS1E3aAdN6ANoCEdAp2lpj8UEgXVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46b89c6cd10b7a26a7fd1e39b6b4a9aff9a25e127f76ed82e38bd4cab19955da
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a77dbc85731e328b445f37f155795a0d400e9f8a49f2833b6e9dd47278bf15d
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3e78796f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3e7879c040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3e7879c0d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3e7879c160>", "_build": "<function ActorCriticPolicy._build at 0x7f3e7879c1f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3e7879c280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3e7879c310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3e7879c3a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3e7879c430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3e7879c4c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3e7879c550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3e7879c5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3e78790cc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674115009970026560, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGgY4j9amYs/Xsojvx4tkr+KO4m+7ZdEvWxcFkD1O6e/V86nv/v4jj1BUsK/3OHiPkNRBz+7i6e/Jplsvx5wUT4pNI6/P6NvP3ylqT6CqXm/qhE5v2uQwD8YSFi9I1Wqv/6HWr/Ne7q/LiCiPsi1xL+15bg+HJuTPzSmQ7/7q7s+E1MTQJjv8T9su38/FcgOP8ula78+5xvAsZs5P9fABsB+frc/HfKEu6Vt+L89CaA+0dpOP35ne8Bnvc8+bL+XvrMLXj9DagLAF3KpvTwXUD/+h1q/FrcvPy4goj6GlCY/hdhvvl/mR78f0Tk/ERQuP1cGAb6/7No+j9rGvYKBOr+F+7g/CGe1uksS377CZeO+kFtGPadtHz5CIQ4/A6sPPxTo9z9giD6/G/nVPuCyqjxsl40+9AMXv0uFJz/BbAM//odavxa3Lz8uIKI+hpQmPw+VBj7RQ42//nM2P/S6Ij4o0wa/LIOPPvB4Wj5SQUq/tjy5P09+t7yi7yO+euoawJ8ijr9G6Fc+1aolv2LEMj557AlAbxYiv+7/3T4dN5a8b7L5PkKXzb74XIk/uG/BPv6HWr8Wty8/LiCiPsi1xL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA6fo82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARs6RvQAAAACkqP+/AAAAANrjr7wAAAAAlBL/PwAAAAAc8/s9AAAAAHCM6z8AAAAA9YFMvAAAAAB4fOG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvAqhtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD93zz0AAAAAYYf8vwAAAAB2Mdm9AAAAAKTA5D8AAAAA9YfxPQAAAACE8us/AAAAAMHB6z0AAAAAlLXbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIddO7cAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBCLg8+AAAAAKvF578AAAAA84kKvgAAAADSeN0/AAAAAABYtb0AAAAA8L75PwAAAAA/xfo9AAAAAAdg4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASucU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWUdWvQAAAABsxea/AAAAAEcUzD0AAAAAaWzfPwAAAAA8aBA+AAAAAMSc7z8AAAAAAaEZPQAAAAA1lOu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKAKfTYNAkeMAWyUTegDjAF0lEdApkEl8Z1mrnV9lChoBkdAn+3AXqJMx2gHTegDaAhHQKZC2ALApKB1fZQoaAZHQKA33YL9deJoB03oA2gIR0CmSH59NN8FdX2UKGgGR0CftVh3qzJIaAdN6ANoCEdApkiDxZuAJHV9lChoBkdAnO4KURnOB2gHTegDaAhHQKZNDFGXokl1fZQoaAZHQJ44/YDklu5oB03oA2gIR0CmTsFs54nndX2UKGgGR0CZYnmce8wpaAdN6ANoCEdAplR8jcEeQ3V9lChoBkdAnRW16zE74mgHTegDaAhHQKZUge7tiQV1fZQoaAZHQJhEKHbh3q1oB03oA2gIR0CmWQYNy5qedX2UKGgGR0CW8h1oxpL3aAdN6ANoCEdAplq2OS4e93V9lChoBkdAkxKTgQ6IWWgHTegDaAhHQKZgWYsNDtx1fZQoaAZHQJDQD3YcvM9oB03oA2gIR0CmYF8fms/6dX2UKGgGR0CUwEEZR8+iaAdN6ANoCEdApmTXbM5fdHV9lChoBkdAjMQMT37DVGgHTegDaAhHQKZmhqDbrTp1fZQoaAZHQI7SRGBnSORoB03oA2gIR0CmbA3mvGIbdX2UKGgGR0CM2qC/XXiBaAdN6ANoCEdApmwTXg9/0HV9lChoBkdAkXTmNFSbY2gHTegDaAhHQKZwrozvZyx1fZQoaAZHQIw661eBxxVoB03oA2gIR0Cmcmabvw3HdX2UKGgGR0CQ3NLNwBHTaAdN6ANoCEdApngHGyX2NHV9lChoBkdAiikRFAmiQGgHTegDaAhHQKZ4DJ9y9251fZQoaAZHQJPGBJPIn0FoB03oA2gIR0CmfI5hz/6wdX2UKGgGR0CTjsBwuM/AaAdN6ANoCEdApn5DSApazXV9lChoBkdAk4m/CVKPGWgHTegDaAhHQKaECZa3Zwp1fZQoaAZHQJZCtMvh60JoB03oA2gIR0CmhBJvo/zKdX2UKGgGR0CVesgNgBtDaAdN6ANoCEdApoiX60pmVnV9lChoBkdAlANjCcf/3mgHTegDaAhHQKaKSPjn3cp1fZQoaAZHQJVlZH4GlhxoB03oA2gIR0Cmj+R8c+7ldX2UKGgGR0CVG1BQemvXaAdN6ANoCEdApo/qXyAhCHV9lChoBkdAl5gifg75mGgHTegDaAhHQKaUWlIEr5J1fZQoaAZHQJTrKAavRqpoB03oA2gIR0CmlhSuIRAbdX2UKGgGR0CWmgtmcvugaAdN6ANoCEdAppuq44Ia+HV9lChoBkdAluJC4axX4mgHTegDaAhHQKabsG5c1O11fZQoaAZHQJVb2Fev6j5oB03oA2gIR0CmoBY1YQrddX2UKGgGR0CSAU+jdpIuaAdN6ANoCEdApqG/hwVCX3V9lChoBkdAlCVZ40Mw12gHTegDaAhHQKanaJ79hql1fZQoaAZHQJZQygezUqhoB03oA2gIR0Cmp25pJwsHdX2UKGgGR0CY9HffoA4oaAdN6ANoCEdApqwLh5xBFHV9lChoBkdAmJAabF0gbWgHTegDaAhHQKattaVUuL91fZQoaAZHQJhgx9NN8E5oB03oA2gIR0Cms2QdS2pidX2UKGgGR0CWyOek56t1aAdN6ANoCEdAprNqHARChXV9lChoBkdAmlHnIlt0m2gHTegDaAhHQKa37Y4ACGN1fZQoaAZHQJiAKo1k1/FoB03oA2gIR0CmuaKBEroXdX2UKGgGR0CV7ljs2NvPaAdN6ANoCEdApr9hwwTM7nV9lChoBkdAlo6C2hIvrWgHTegDaAhHQKa/Z7rLQol1fZQoaAZHQJKOII+nqFBoB03oA2gIR0Cmw+QTmGM5dX2UKGgGR0CV3OfQ8fV7aAdN6ANoCEdApsWY2VE/jnV9lChoBkdAlDd0078vVWgHTegDaAhHQKbLL/WlMyt1fZQoaAZHQJYjTOC5EtxoB03oA2gIR0CmyzXh4t6HdX2UKGgGR0CUKakRzzVdaAdN6ANoCEdAps/TmnwXqXV9lChoBkdAk4Iz0lJHy2gHTegDaAhHQKbRi9nscAB1fZQoaAZHQJYExSZSeiBoB03oA2gIR0Cm1ymqxTsIdX2UKGgGR0CWCHOZLIxQaAdN6ANoCEdAptcvnZCfH3V9lChoBkdAlm4mG7Bfr2gHTegDaAhHQKbbtsvZh8Z1fZQoaAZHQJzYrpC8e0ZoB03oA2gIR0Cm3WYHxBmgdX2UKGgGR0Ca24QZ4wAVaAdN6ANoCEdApuMG3OObRXV9lChoBkdAm6Efio86m2gHTegDaAhHQKbjDMnJDE51fZQoaAZHQJeuHaVUuL9oB03oA2gIR0Cm56b1AZ88dX2UKGgGR0Caum/uLJjlaAdN6ANoCEdApulnN7jT8nV9lChoBkdAl6Q7uhK15WgHTegDaAhHQKbvEm3vx6R1fZQoaAZHQJhhynO0LMNoB03oA2gIR0Cm7xg2qDK6dX2UKGgGR0CVpfbedkJ8aAdN6ANoCEdApvOvR/mT1XV9lChoBkdAlNjb2USqVGgHTegDaAhHQKb1bd8iOed1fZQoaAZHQJjU4ZLqUvBoB03oA2gIR0Cm+x1SwW30dX2UKGgGR0CXmJ/CZWq+aAdN6ANoCEdApvsi68QI2XV9lChoBkdAlnKnvMKTjmgHTegDaAhHQKb/wIAwPAh1fZQoaAZHQJlk7mOlwcZoB03oA2gIR0CnAW5WRzRydX2UKGgGR0CXk+VFx4puaAdN6ANoCEdApwcEk0JnhHV9lChoBkdAmOBzSofjj2gHTegDaAhHQKcHCevIOpd1fZQoaAZHQJu7R9QXQ+loB03oA2gIR0CnC523Sa3JdX2UKGgGR0CWqn8SPEKmaAdN6ANoCEdApw1NDSgGr3V9lChoBkdAl+MGapgkT2gHTegDaAhHQKcS/65XlsB1fZQoaAZHQJXDdGWldkdoB03oA2gIR0CnEwU/GEPEdX2UKGgGR0CWI44ZuQ6qaAdN6ANoCEdApxl3Yao/A3V9lChoBkdAmL86lYU342gHTegDaAhHQKcb7u2JBPd1fZQoaAZHQJi8UtOEdvNoB03oA2gIR0CnIZKtozvadX2UKGgGR0CU4RBu4wyqaAdN6ANoCEdApyGYOQQtjHV9lChoBkdAmA1JwsGxEGgHTegDaAhHQKcmSbMHKOl1fZQoaAZHQJaTQLkS26VoB03oA2gIR0CnKBMZxaPkdX2UKGgGR0CXO92dNFjNaAdN6ANoCEdApy3cCmuTzXV9lChoBkdAlqp1WjoIOmgHTegDaAhHQKct4bpeNT91fZQoaAZHQJiHzCWNWENoB03oA2gIR0CnMmzposZpdX2UKGgGR0CWbAXUYsNEaAdN6ANoCEdApzQgAuIykHV9lChoBkdAmV/hE4Nqg2gHTegDaAhHQKc52QFLWZt1fZQoaAZHQJmyTb1yvLZoB03oA2gIR0CnOd6IWP92dX2UKGgGR0CXcerK/20zaAdN6ANoCEdApz5omReTmnV9lChoBkdAmpIEOEug6GgHTegDaAhHQKdAFtuUD+11fZQoaAZHQJaWrEKmbb1oB03oA2gIR0CnRbS/bj95dX2UKGgGR0Cah5KYiPhiaAdN6ANoCEdAp0W6Q1aW5nV9lChoBkdAmZTncL0BfmgHTegDaAhHQKdKNm4Ajpt1fZQoaAZHQJbXfXVbzK9oB03oA2gIR0CnS+ryUcGUdX2UKGgGR0CWQrdUbT+eaAdN6ANoCEdAp1F6SX+l03V9lChoBkdAmkgrj94u9WgHTegDaAhHQKdRf7655JN1fZQoaAZHQJluR6Ww/xFoB03oA2gIR0CnVf/VAiV0dX2UKGgGR0CXlu23azu4aAdN6ANoCEdAp1e1bu+h5HV9lChoBkdAmPcLZBcAzmgHTegDaAhHQKddQQL/jsF1fZQoaAZHQJiKDwXqJMxoB03oA2gIR0CnXUasIVuadX2UKGgGR0CaA4KVY6n0aAdN6ANoCEdAp2HlFnZkCnV9lChoBkdAmX8yfpUxVWgHTegDaAhHQKdjtHsC1Z11fZQoaAZHQJmfTgFX7tRoB03oA2gIR0CnaWQZXMhYdX2UKGgGR0CZb6tzS1E3aAdN6ANoCEdAp2lpj8UEgXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d44af7d05358b4fe11d87423fb088ac56fec10e0f87478ac2c27a436844fc970
3
+ size 1248570
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1482.7444109934265, "std_reward": 360.64963388737954, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T08:48:48.400690"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33b9ecd9176c816b6a59a16942e42940e63face4d746261d5f73dd24d31cac8b
3
+ size 2521