Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1482.74 +/- 360.65
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4caa74683d24611608afad1b6e0909b575ca8e0e76755812150836b5fe82432b
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3e78796f70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3e7879c040>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3e7879c0d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3e7879c160>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3e7879c1f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3e7879c280>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3e7879c310>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3e7879c3a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3e7879c430>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3e7879c4c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3e7879c550>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3e7879c5e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f3e78790cc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674115009970026560,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGgY4j9amYs/Xsojvx4tkr+KO4m+7ZdEvWxcFkD1O6e/V86nv/v4jj1BUsK/3OHiPkNRBz+7i6e/Jplsvx5wUT4pNI6/P6NvP3ylqT6CqXm/qhE5v2uQwD8YSFi9I1Wqv/6HWr/Ne7q/LiCiPsi1xL+15bg+HJuTPzSmQ7/7q7s+E1MTQJjv8T9su38/FcgOP8ula78+5xvAsZs5P9fABsB+frc/HfKEu6Vt+L89CaA+0dpOP35ne8Bnvc8+bL+XvrMLXj9DagLAF3KpvTwXUD/+h1q/FrcvPy4goj6GlCY/hdhvvl/mR78f0Tk/ERQuP1cGAb6/7No+j9rGvYKBOr+F+7g/CGe1uksS377CZeO+kFtGPadtHz5CIQ4/A6sPPxTo9z9giD6/G/nVPuCyqjxsl40+9AMXv0uFJz/BbAM//odavxa3Lz8uIKI+hpQmPw+VBj7RQ42//nM2P/S6Ij4o0wa/LIOPPvB4Wj5SQUq/tjy5P09+t7yi7yO+euoawJ8ijr9G6Fc+1aolv2LEMj557AlAbxYiv+7/3T4dN5a8b7L5PkKXzb74XIk/uG/BPv6HWr8Wty8/LiCiPsi1xL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA6fo82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARs6RvQAAAACkqP+/AAAAANrjr7wAAAAAlBL/PwAAAAAc8/s9AAAAAHCM6z8AAAAA9YFMvAAAAAB4fOG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvAqhtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD93zz0AAAAAYYf8vwAAAAB2Mdm9AAAAAKTA5D8AAAAA9YfxPQAAAACE8us/AAAAAMHB6z0AAAAAlLXbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIddO7cAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBCLg8+AAAAAKvF578AAAAA84kKvgAAAADSeN0/AAAAAABYtb0AAAAA8L75PwAAAAA/xfo9AAAAAAdg4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASucU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWUdWvQAAAABsxea/AAAAAEcUzD0AAAAAaWzfPwAAAAA8aBA+AAAAAMSc7z8AAAAAAaEZPQAAAAA1lOu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKAKfTYNAkeMAWyUTegDjAF0lEdApkEl8Z1mrnV9lChoBkdAn+3AXqJMx2gHTegDaAhHQKZC2ALApKB1fZQoaAZHQKA33YL9deJoB03oA2gIR0CmSH59NN8FdX2UKGgGR0CftVh3qzJIaAdN6ANoCEdApkiDxZuAJHV9lChoBkdAnO4KURnOB2gHTegDaAhHQKZNDFGXokl1fZQoaAZHQJ44/YDklu5oB03oA2gIR0CmTsFs54nndX2UKGgGR0CZYnmce8wpaAdN6ANoCEdAplR8jcEeQ3V9lChoBkdAnRW16zE74mgHTegDaAhHQKZUge7tiQV1fZQoaAZHQJhEKHbh3q1oB03oA2gIR0CmWQYNy5qedX2UKGgGR0CW8h1oxpL3aAdN6ANoCEdAplq2OS4e93V9lChoBkdAkxKTgQ6IWWgHTegDaAhHQKZgWYsNDtx1fZQoaAZHQJDQD3YcvM9oB03oA2gIR0CmYF8fms/6dX2UKGgGR0CUwEEZR8+iaAdN6ANoCEdApmTXbM5fdHV9lChoBkdAjMQMT37DVGgHTegDaAhHQKZmhqDbrTp1fZQoaAZHQI7SRGBnSORoB03oA2gIR0CmbA3mvGIbdX2UKGgGR0CM2qC/XXiBaAdN6ANoCEdApmwTXg9/0HV9lChoBkdAkXTmNFSbY2gHTegDaAhHQKZwrozvZyx1fZQoaAZHQIw661eBxxVoB03oA2gIR0Cmcmabvw3HdX2UKGgGR0CQ3NLNwBHTaAdN6ANoCEdApngHGyX2NHV9lChoBkdAiikRFAmiQGgHTegDaAhHQKZ4DJ9y9251fZQoaAZHQJPGBJPIn0FoB03oA2gIR0CmfI5hz/6wdX2UKGgGR0CTjsBwuM/AaAdN6ANoCEdApn5DSApazXV9lChoBkdAk4m/CVKPGWgHTegDaAhHQKaECZa3Zwp1fZQoaAZHQJZCtMvh60JoB03oA2gIR0CmhBJvo/zKdX2UKGgGR0CVesgNgBtDaAdN6ANoCEdApoiX60pmVnV9lChoBkdAlANjCcf/3mgHTegDaAhHQKaKSPjn3cp1fZQoaAZHQJVlZH4GlhxoB03oA2gIR0Cmj+R8c+7ldX2UKGgGR0CVG1BQemvXaAdN6ANoCEdApo/qXyAhCHV9lChoBkdAl5gifg75mGgHTegDaAhHQKaUWlIEr5J1fZQoaAZHQJTrKAavRqpoB03oA2gIR0CmlhSuIRAbdX2UKGgGR0CWmgtmcvugaAdN6ANoCEdAppuq44Ia+HV9lChoBkdAluJC4axX4mgHTegDaAhHQKabsG5c1O11fZQoaAZHQJVb2Fev6j5oB03oA2gIR0CmoBY1YQrddX2UKGgGR0CSAU+jdpIuaAdN6ANoCEdApqG/hwVCX3V9lChoBkdAlCVZ40Mw12gHTegDaAhHQKanaJ79hql1fZQoaAZHQJZQygezUqhoB03oA2gIR0Cmp25pJwsHdX2UKGgGR0CY9HffoA4oaAdN6ANoCEdApqwLh5xBFHV9lChoBkdAmJAabF0gbWgHTegDaAhHQKattaVUuL91fZQoaAZHQJhgx9NN8E5oB03oA2gIR0Cms2QdS2pidX2UKGgGR0CWyOek56t1aAdN6ANoCEdAprNqHARChXV9lChoBkdAmlHnIlt0m2gHTegDaAhHQKa37Y4ACGN1fZQoaAZHQJiAKo1k1/FoB03oA2gIR0CmuaKBEroXdX2UKGgGR0CV7ljs2NvPaAdN6ANoCEdApr9hwwTM7nV9lChoBkdAlo6C2hIvrWgHTegDaAhHQKa/Z7rLQol1fZQoaAZHQJKOII+nqFBoB03oA2gIR0Cmw+QTmGM5dX2UKGgGR0CV3OfQ8fV7aAdN6ANoCEdApsWY2VE/jnV9lChoBkdAlDd0078vVWgHTegDaAhHQKbLL/WlMyt1fZQoaAZHQJYjTOC5EtxoB03oA2gIR0CmyzXh4t6HdX2UKGgGR0CUKakRzzVdaAdN6ANoCEdAps/TmnwXqXV9lChoBkdAk4Iz0lJHy2gHTegDaAhHQKbRi9nscAB1fZQoaAZHQJYExSZSeiBoB03oA2gIR0Cm1ymqxTsIdX2UKGgGR0CWCHOZLIxQaAdN6ANoCEdAptcvnZCfH3V9lChoBkdAlm4mG7Bfr2gHTegDaAhHQKbbtsvZh8Z1fZQoaAZHQJzYrpC8e0ZoB03oA2gIR0Cm3WYHxBmgdX2UKGgGR0Ca24QZ4wAVaAdN6ANoCEdApuMG3OObRXV9lChoBkdAm6Efio86m2gHTegDaAhHQKbjDMnJDE51fZQoaAZHQJeuHaVUuL9oB03oA2gIR0Cm56b1AZ88dX2UKGgGR0Caum/uLJjlaAdN6ANoCEdApulnN7jT8nV9lChoBkdAl6Q7uhK15WgHTegDaAhHQKbvEm3vx6R1fZQoaAZHQJhhynO0LMNoB03oA2gIR0Cm7xg2qDK6dX2UKGgGR0CVpfbedkJ8aAdN6ANoCEdApvOvR/mT1XV9lChoBkdAlNjb2USqVGgHTegDaAhHQKb1bd8iOed1fZQoaAZHQJjU4ZLqUvBoB03oA2gIR0Cm+x1SwW30dX2UKGgGR0CXmJ/CZWq+aAdN6ANoCEdApvsi68QI2XV9lChoBkdAlnKnvMKTjmgHTegDaAhHQKb/wIAwPAh1fZQoaAZHQJlk7mOlwcZoB03oA2gIR0CnAW5WRzRydX2UKGgGR0CXk+VFx4puaAdN6ANoCEdApwcEk0JnhHV9lChoBkdAmOBzSofjj2gHTegDaAhHQKcHCevIOpd1fZQoaAZHQJu7R9QXQ+loB03oA2gIR0CnC523Sa3JdX2UKGgGR0CWqn8SPEKmaAdN6ANoCEdApw1NDSgGr3V9lChoBkdAl+MGapgkT2gHTegDaAhHQKcS/65XlsB1fZQoaAZHQJXDdGWldkdoB03oA2gIR0CnEwU/GEPEdX2UKGgGR0CWI44ZuQ6qaAdN6ANoCEdApxl3Yao/A3V9lChoBkdAmL86lYU342gHTegDaAhHQKcb7u2JBPd1fZQoaAZHQJi8UtOEdvNoB03oA2gIR0CnIZKtozvadX2UKGgGR0CU4RBu4wyqaAdN6ANoCEdApyGYOQQtjHV9lChoBkdAmA1JwsGxEGgHTegDaAhHQKcmSbMHKOl1fZQoaAZHQJaTQLkS26VoB03oA2gIR0CnKBMZxaPkdX2UKGgGR0CXO92dNFjNaAdN6ANoCEdApy3cCmuTzXV9lChoBkdAlqp1WjoIOmgHTegDaAhHQKct4bpeNT91fZQoaAZHQJiHzCWNWENoB03oA2gIR0CnMmzposZpdX2UKGgGR0CWbAXUYsNEaAdN6ANoCEdApzQgAuIykHV9lChoBkdAmV/hE4Nqg2gHTegDaAhHQKc52QFLWZt1fZQoaAZHQJmyTb1yvLZoB03oA2gIR0CnOd6IWP92dX2UKGgGR0CXcerK/20zaAdN6ANoCEdApz5omReTmnV9lChoBkdAmpIEOEug6GgHTegDaAhHQKdAFtuUD+11fZQoaAZHQJaWrEKmbb1oB03oA2gIR0CnRbS/bj95dX2UKGgGR0Cah5KYiPhiaAdN6ANoCEdAp0W6Q1aW5nV9lChoBkdAmZTncL0BfmgHTegDaAhHQKdKNm4Ajpt1fZQoaAZHQJbXfXVbzK9oB03oA2gIR0CnS+ryUcGUdX2UKGgGR0CWQrdUbT+eaAdN6ANoCEdAp1F6SX+l03V9lChoBkdAmkgrj94u9WgHTegDaAhHQKdRf7655JN1fZQoaAZHQJluR6Ww/xFoB03oA2gIR0CnVf/VAiV0dX2UKGgGR0CXlu23azu4aAdN6ANoCEdAp1e1bu+h5HV9lChoBkdAmPcLZBcAzmgHTegDaAhHQKddQQL/jsF1fZQoaAZHQJiKDwXqJMxoB03oA2gIR0CnXUasIVuadX2UKGgGR0CaA4KVY6n0aAdN6ANoCEdAp2HlFnZkCnV9lChoBkdAmX8yfpUxVWgHTegDaAhHQKdjtHsC1Z11fZQoaAZHQJmfTgFX7tRoB03oA2gIR0CnaWQZXMhYdX2UKGgGR0CZb6tzS1E3aAdN6ANoCEdAp2lpj8UEgXVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46b89c6cd10b7a26a7fd1e39b6b4a9aff9a25e127f76ed82e38bd4cab19955da
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a77dbc85731e328b445f37f155795a0d400e9f8a49f2833b6e9dd47278bf15d
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3e78796f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3e7879c040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3e7879c0d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3e7879c160>", "_build": "<function ActorCriticPolicy._build at 0x7f3e7879c1f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3e7879c280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3e7879c310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3e7879c3a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3e7879c430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3e7879c4c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3e7879c550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3e7879c5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3e78790cc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674115009970026560, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGgY4j9amYs/Xsojvx4tkr+KO4m+7ZdEvWxcFkD1O6e/V86nv/v4jj1BUsK/3OHiPkNRBz+7i6e/Jplsvx5wUT4pNI6/P6NvP3ylqT6CqXm/qhE5v2uQwD8YSFi9I1Wqv/6HWr/Ne7q/LiCiPsi1xL+15bg+HJuTPzSmQ7/7q7s+E1MTQJjv8T9su38/FcgOP8ula78+5xvAsZs5P9fABsB+frc/HfKEu6Vt+L89CaA+0dpOP35ne8Bnvc8+bL+XvrMLXj9DagLAF3KpvTwXUD/+h1q/FrcvPy4goj6GlCY/hdhvvl/mR78f0Tk/ERQuP1cGAb6/7No+j9rGvYKBOr+F+7g/CGe1uksS377CZeO+kFtGPadtHz5CIQ4/A6sPPxTo9z9giD6/G/nVPuCyqjxsl40+9AMXv0uFJz/BbAM//odavxa3Lz8uIKI+hpQmPw+VBj7RQ42//nM2P/S6Ij4o0wa/LIOPPvB4Wj5SQUq/tjy5P09+t7yi7yO+euoawJ8ijr9G6Fc+1aolv2LEMj557AlAbxYiv+7/3T4dN5a8b7L5PkKXzb74XIk/uG/BPv6HWr8Wty8/LiCiPsi1xL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA6fo82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARs6RvQAAAACkqP+/AAAAANrjr7wAAAAAlBL/PwAAAAAc8/s9AAAAAHCM6z8AAAAA9YFMvAAAAAB4fOG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvAqhtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD93zz0AAAAAYYf8vwAAAAB2Mdm9AAAAAKTA5D8AAAAA9YfxPQAAAACE8us/AAAAAMHB6z0AAAAAlLXbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIddO7cAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBCLg8+AAAAAKvF578AAAAA84kKvgAAAADSeN0/AAAAAABYtb0AAAAA8L75PwAAAAA/xfo9AAAAAAdg4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASucU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWUdWvQAAAABsxea/AAAAAEcUzD0AAAAAaWzfPwAAAAA8aBA+AAAAAMSc7z8AAAAAAaEZPQAAAAA1lOu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKAKfTYNAkeMAWyUTegDjAF0lEdApkEl8Z1mrnV9lChoBkdAn+3AXqJMx2gHTegDaAhHQKZC2ALApKB1fZQoaAZHQKA33YL9deJoB03oA2gIR0CmSH59NN8FdX2UKGgGR0CftVh3qzJIaAdN6ANoCEdApkiDxZuAJHV9lChoBkdAnO4KURnOB2gHTegDaAhHQKZNDFGXokl1fZQoaAZHQJ44/YDklu5oB03oA2gIR0CmTsFs54nndX2UKGgGR0CZYnmce8wpaAdN6ANoCEdAplR8jcEeQ3V9lChoBkdAnRW16zE74mgHTegDaAhHQKZUge7tiQV1fZQoaAZHQJhEKHbh3q1oB03oA2gIR0CmWQYNy5qedX2UKGgGR0CW8h1oxpL3aAdN6ANoCEdAplq2OS4e93V9lChoBkdAkxKTgQ6IWWgHTegDaAhHQKZgWYsNDtx1fZQoaAZHQJDQD3YcvM9oB03oA2gIR0CmYF8fms/6dX2UKGgGR0CUwEEZR8+iaAdN6ANoCEdApmTXbM5fdHV9lChoBkdAjMQMT37DVGgHTegDaAhHQKZmhqDbrTp1fZQoaAZHQI7SRGBnSORoB03oA2gIR0CmbA3mvGIbdX2UKGgGR0CM2qC/XXiBaAdN6ANoCEdApmwTXg9/0HV9lChoBkdAkXTmNFSbY2gHTegDaAhHQKZwrozvZyx1fZQoaAZHQIw661eBxxVoB03oA2gIR0Cmcmabvw3HdX2UKGgGR0CQ3NLNwBHTaAdN6ANoCEdApngHGyX2NHV9lChoBkdAiikRFAmiQGgHTegDaAhHQKZ4DJ9y9251fZQoaAZHQJPGBJPIn0FoB03oA2gIR0CmfI5hz/6wdX2UKGgGR0CTjsBwuM/AaAdN6ANoCEdApn5DSApazXV9lChoBkdAk4m/CVKPGWgHTegDaAhHQKaECZa3Zwp1fZQoaAZHQJZCtMvh60JoB03oA2gIR0CmhBJvo/zKdX2UKGgGR0CVesgNgBtDaAdN6ANoCEdApoiX60pmVnV9lChoBkdAlANjCcf/3mgHTegDaAhHQKaKSPjn3cp1fZQoaAZHQJVlZH4GlhxoB03oA2gIR0Cmj+R8c+7ldX2UKGgGR0CVG1BQemvXaAdN6ANoCEdApo/qXyAhCHV9lChoBkdAl5gifg75mGgHTegDaAhHQKaUWlIEr5J1fZQoaAZHQJTrKAavRqpoB03oA2gIR0CmlhSuIRAbdX2UKGgGR0CWmgtmcvugaAdN6ANoCEdAppuq44Ia+HV9lChoBkdAluJC4axX4mgHTegDaAhHQKabsG5c1O11fZQoaAZHQJVb2Fev6j5oB03oA2gIR0CmoBY1YQrddX2UKGgGR0CSAU+jdpIuaAdN6ANoCEdApqG/hwVCX3V9lChoBkdAlCVZ40Mw12gHTegDaAhHQKanaJ79hql1fZQoaAZHQJZQygezUqhoB03oA2gIR0Cmp25pJwsHdX2UKGgGR0CY9HffoA4oaAdN6ANoCEdApqwLh5xBFHV9lChoBkdAmJAabF0gbWgHTegDaAhHQKattaVUuL91fZQoaAZHQJhgx9NN8E5oB03oA2gIR0Cms2QdS2pidX2UKGgGR0CWyOek56t1aAdN6ANoCEdAprNqHARChXV9lChoBkdAmlHnIlt0m2gHTegDaAhHQKa37Y4ACGN1fZQoaAZHQJiAKo1k1/FoB03oA2gIR0CmuaKBEroXdX2UKGgGR0CV7ljs2NvPaAdN6ANoCEdApr9hwwTM7nV9lChoBkdAlo6C2hIvrWgHTegDaAhHQKa/Z7rLQol1fZQoaAZHQJKOII+nqFBoB03oA2gIR0Cmw+QTmGM5dX2UKGgGR0CV3OfQ8fV7aAdN6ANoCEdApsWY2VE/jnV9lChoBkdAlDd0078vVWgHTegDaAhHQKbLL/WlMyt1fZQoaAZHQJYjTOC5EtxoB03oA2gIR0CmyzXh4t6HdX2UKGgGR0CUKakRzzVdaAdN6ANoCEdAps/TmnwXqXV9lChoBkdAk4Iz0lJHy2gHTegDaAhHQKbRi9nscAB1fZQoaAZHQJYExSZSeiBoB03oA2gIR0Cm1ymqxTsIdX2UKGgGR0CWCHOZLIxQaAdN6ANoCEdAptcvnZCfH3V9lChoBkdAlm4mG7Bfr2gHTegDaAhHQKbbtsvZh8Z1fZQoaAZHQJzYrpC8e0ZoB03oA2gIR0Cm3WYHxBmgdX2UKGgGR0Ca24QZ4wAVaAdN6ANoCEdApuMG3OObRXV9lChoBkdAm6Efio86m2gHTegDaAhHQKbjDMnJDE51fZQoaAZHQJeuHaVUuL9oB03oA2gIR0Cm56b1AZ88dX2UKGgGR0Caum/uLJjlaAdN6ANoCEdApulnN7jT8nV9lChoBkdAl6Q7uhK15WgHTegDaAhHQKbvEm3vx6R1fZQoaAZHQJhhynO0LMNoB03oA2gIR0Cm7xg2qDK6dX2UKGgGR0CVpfbedkJ8aAdN6ANoCEdApvOvR/mT1XV9lChoBkdAlNjb2USqVGgHTegDaAhHQKb1bd8iOed1fZQoaAZHQJjU4ZLqUvBoB03oA2gIR0Cm+x1SwW30dX2UKGgGR0CXmJ/CZWq+aAdN6ANoCEdApvsi68QI2XV9lChoBkdAlnKnvMKTjmgHTegDaAhHQKb/wIAwPAh1fZQoaAZHQJlk7mOlwcZoB03oA2gIR0CnAW5WRzRydX2UKGgGR0CXk+VFx4puaAdN6ANoCEdApwcEk0JnhHV9lChoBkdAmOBzSofjj2gHTegDaAhHQKcHCevIOpd1fZQoaAZHQJu7R9QXQ+loB03oA2gIR0CnC523Sa3JdX2UKGgGR0CWqn8SPEKmaAdN6ANoCEdApw1NDSgGr3V9lChoBkdAl+MGapgkT2gHTegDaAhHQKcS/65XlsB1fZQoaAZHQJXDdGWldkdoB03oA2gIR0CnEwU/GEPEdX2UKGgGR0CWI44ZuQ6qaAdN6ANoCEdApxl3Yao/A3V9lChoBkdAmL86lYU342gHTegDaAhHQKcb7u2JBPd1fZQoaAZHQJi8UtOEdvNoB03oA2gIR0CnIZKtozvadX2UKGgGR0CU4RBu4wyqaAdN6ANoCEdApyGYOQQtjHV9lChoBkdAmA1JwsGxEGgHTegDaAhHQKcmSbMHKOl1fZQoaAZHQJaTQLkS26VoB03oA2gIR0CnKBMZxaPkdX2UKGgGR0CXO92dNFjNaAdN6ANoCEdApy3cCmuTzXV9lChoBkdAlqp1WjoIOmgHTegDaAhHQKct4bpeNT91fZQoaAZHQJiHzCWNWENoB03oA2gIR0CnMmzposZpdX2UKGgGR0CWbAXUYsNEaAdN6ANoCEdApzQgAuIykHV9lChoBkdAmV/hE4Nqg2gHTegDaAhHQKc52QFLWZt1fZQoaAZHQJmyTb1yvLZoB03oA2gIR0CnOd6IWP92dX2UKGgGR0CXcerK/20zaAdN6ANoCEdApz5omReTmnV9lChoBkdAmpIEOEug6GgHTegDaAhHQKdAFtuUD+11fZQoaAZHQJaWrEKmbb1oB03oA2gIR0CnRbS/bj95dX2UKGgGR0Cah5KYiPhiaAdN6ANoCEdAp0W6Q1aW5nV9lChoBkdAmZTncL0BfmgHTegDaAhHQKdKNm4Ajpt1fZQoaAZHQJbXfXVbzK9oB03oA2gIR0CnS+ryUcGUdX2UKGgGR0CWQrdUbT+eaAdN6ANoCEdAp1F6SX+l03V9lChoBkdAmkgrj94u9WgHTegDaAhHQKdRf7655JN1fZQoaAZHQJluR6Ww/xFoB03oA2gIR0CnVf/VAiV0dX2UKGgGR0CXlu23azu4aAdN6ANoCEdAp1e1bu+h5HV9lChoBkdAmPcLZBcAzmgHTegDaAhHQKddQQL/jsF1fZQoaAZHQJiKDwXqJMxoB03oA2gIR0CnXUasIVuadX2UKGgGR0CaA4KVY6n0aAdN6ANoCEdAp2HlFnZkCnV9lChoBkdAmX8yfpUxVWgHTegDaAhHQKdjtHsC1Z11fZQoaAZHQJmfTgFX7tRoB03oA2gIR0CnaWQZXMhYdX2UKGgGR0CZb6tzS1E3aAdN6ANoCEdAp2lpj8UEgXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d44af7d05358b4fe11d87423fb088ac56fec10e0f87478ac2c27a436844fc970
|
3 |
+
size 1248570
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1482.7444109934265, "std_reward": 360.64963388737954, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T08:48:48.400690"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33b9ecd9176c816b6a59a16942e42940e63face4d746261d5f73dd24d31cac8b
|
3 |
+
size 2521
|