File size: 7,912 Bytes
51657dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Setup & Installation"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting requirements.txt\n"
]
}
],
"source": [
"%%writefile requirements.txt\n",
"git+https://github.com/openai/whisper.git@8cf36f3508c9acd341a45eb2364239a3d81458b9"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install -r requirements.txt --upgrade"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Test model"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"--2022-09-23 20:32:18-- https://cdn-media.huggingface.co/speech_samples/sample1.flac\n",
"Resolving cdn-media.huggingface.co (cdn-media.huggingface.co)... 13.32.151.62, 13.32.151.23, 13.32.151.60, ...\n",
"Connecting to cdn-media.huggingface.co (cdn-media.huggingface.co)|13.32.151.62|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 282378 (276K) [audio/flac]\n",
"Saving to: βsample1.flacβ\n",
"\n",
"sample1.flac 100%[===================>] 275.76K --.-KB/s in 0.003s \n",
"\n",
"2022-09-23 20:32:18 (78.7 MB/s) - βsample1.flacβ saved [282378/282378]\n",
"\n"
]
}
],
"source": [
"!wget https://cdn-media.huggingface.co/speech_samples/sample1.flac"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|βββββββββββββββββββββββββββββββββββββ| 2.87G/2.87G [01:11<00:00, 42.9MiB/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Detected language: english\n",
" going along slushy country roads and speaking to damp audiences in drafty school rooms day after day for a fortnight. he'll have to put in an appearance at some place of worship on sunday morning and he can come to us immediately afterwards.\n"
]
}
],
"source": [
"import whisper\n",
"\n",
"model = whisper.load_model(\"large\")\n",
"result = model.transcribe(\"sample1.flac\")\n",
"print(result[\"text\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Create Custom Handler for Inference Endpoints\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting handler.py\n"
]
}
],
"source": [
"%%writefile handler.py\n",
"from typing import Dict\n",
"from transformers.pipelines.audio_utils import ffmpeg_read\n",
"import whisper\n",
"import torch\n",
"\n",
"SAMPLE_RATE = 16000\n",
"\n",
"\n",
"\n",
"class EndpointHandler():\n",
" def __init__(self, path=\"\"):\n",
" # load the model\n",
" self.model = whisper.load_model(\"medium\")\n",
"\n",
"\n",
" def __call__(self, data: Dict[str, bytes]) -> Dict[str, str]:\n",
" \"\"\"\n",
" Args:\n",
" data (:obj:):\n",
" includes the deserialized audio file as bytes\n",
" Return:\n",
" A :obj:`dict`:. base64 encoded image\n",
" \"\"\"\n",
" # process input\n",
" inputs = data.pop(\"inputs\", data)\n",
" audio_nparray = ffmpeg_read(inputs, SAMPLE_RATE)\n",
" audio_tensor= torch.from_numpy(audio_nparray)\n",
" \n",
" # run inference pipeline\n",
" result = self.model.transcribe(audio_nparray)\n",
"\n",
" # postprocess the prediction\n",
" return {\"text\": result[\"text\"]}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"test custom pipeline"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"from handler import EndpointHandler\n",
"\n",
"# init handler\n",
"my_handler = EndpointHandler(path=\".\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/ubuntu/endpoints/openai-whisper-endpoint/handler.py:27: UserWarning: The given NumPy array is not writable, and PyTorch does not support non-writable tensors. This means writing to this tensor will result in undefined behavior. You may want to copy the array to protect its data or make it writable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at ../torch/csrc/utils/tensor_numpy.cpp:178.)\n",
" audio_tensor= torch.from_numpy(audio_nparray)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Detected language: english\n"
]
}
],
"source": [
"import base64\n",
"from PIL import Image\n",
"from io import BytesIO\n",
"import json\n",
"\n",
"# file reader\n",
"with open(\"sample1.flac\", \"rb\") as f:\n",
" request = {\"inputs\": f.read()}\n",
"\n",
"\n",
"# test the handler\n",
"pred = my_handler(request)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'transcription': \" going along slushy country roads and speaking to damp audiences in draughty school rooms day after day for a fortnight. He'll have to put in an appearance at some place of worship on Sunday morning, and he can come to us immediately afterwards.\"}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pred"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'{\"transcription\": \" going along slushy country roads and speaking to damp audiences in draughty school rooms day after day for a fortnight. He\\'ll have to put in an appearance at some place of worship on Sunday morning, and he can come to us immediately afterwards.\"}'"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import json\n",
"\n",
"json.dumps({'transcription': \" going along slushy country roads and speaking to damp audiences in draughty school rooms day after day for a fortnight. He'll have to put in an appearance at some place of worship on Sunday morning, and he can come to us immediately afterwards.\"})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.13 ('dev': conda)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "f6dd96c16031089903d5a31ec148b80aeb0d39c32affb1a1080393235fbfa2fc"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|