File size: 1,739 Bytes
dfb5341 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-large-neg-tags
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-neg-tags
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0016
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Accuracy: 0.9997
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| 0.0143 | 1.0 | 938 | 0.0032 | 0.0 | 0.0 | 0.0 | 0.9995 |
| 0.0033 | 2.0 | 1876 | 0.0017 | 0.0 | 0.0 | 0.0 | 0.9996 |
| 0.0039 | 3.0 | 2814 | 0.0018 | 0.0 | 0.0 | 0.0 | 0.9997 |
| 0.0012 | 4.0 | 3752 | 0.0016 | 0.0 | 0.0 | 0.0 | 0.9997 |
### Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.10.1
- Datasets 2.6.1
- Tokenizers 0.13.1
|