File size: 4,599 Bytes
79cb602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166449f
79cb602
 
 
166449f
79cb602
 
 
ebb22b3
79cb602
 
 
ebb22b3
79cb602
 
 
ebb22b3
 
 
 
79cb602
 
ebb22b3
 
79cb602
 
 
 
 
 
 
 
 
166449f
79cb602
 
 
 
 
166449f
 
 
 
 
 
79cb602
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-large-condaqa-neg-tag-token-classifier
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-large-condaqa-neg-tag-token-classifier

This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0268
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Accuracy: 0.9899

## Model description

Negation detector. A roberta used for detecting negation words in sentences. A negation word will get label "Y".

## Intended uses & limitations

Because the training dataset is small and one sentence is long, maybe some short sentence detection is not that satisfing.

## Training and evaluation data

Using negation annotation and sentence from CondaQA. You can get the dataset through both github and huggingface.
github: https://github.com/AbhilashaRavichander/CondaQA
Common negation cues in CondaQA:
['halt', 'inhospitable', 'unhappy', 'unserviceable', 'dislike', 'unaware', 'unfavorable', 'barely', 'unseen', 'unoccupied', 'unreliability', 'insulator', 'stop', 'indistinguishable', 'unrestricted', 'unfairly', 'unsupervised', 'unicameral', 'forbid', 'unforgettable', 'reject', 'uneducated', 'unlimited', 'illegal', 'uncertainty', 'nonhuman', 'unborn', 'unshaven', 'uncanny', 'incomplete', 'unsure', 'unconscious', 'atypical', 'indirectly', 'unloaded', 'disadvantage', 'contrary', 'infrequent', 'unofficial', 'few', 'untouched', 'refuse', 'inequitable', 'disproportionate', 'unexpected', 'displeased', 'unpaved', 'unwieldy', 'not at all', 'absent', 'unnoticed', 'unpleasant', 'unsafe', 'unsigned', 'not', 'inaccurate', 'cannot', 'involuntary', 'unequipped', 'illiterate', 'cease', 'disagreeable', 'prohibit', 'unable', 'unstable', 'uninhabited', 'unclean', 'useless', 'disapprove', 'insensitive', 'in the absence of', 'impractical', 'unorthodox', 'untreated', 'unsuccessful', 'unwitting', 'unfashionable', 'disagreement', 'unmyelinated', 'unfortunate', 'unknown', 'ineffective', 'a lack of', 'instead of', 'refused', 'illegitimate', 'little', 'unpaid', 'fail', 'unintentionally', 'unglazed', "didn't", 'unprocessed', 'inability', 'undeveloped', 'exclude', 'neither', 'except', 'unequivocal', 'unconventional', 'incorrectly', 'unconditional', 'prevent', 'dissimilar', 'uncommon', 'inorganic', 'unquestionable', 'uncoated', 'unassisted', 'unprecedented', 'nonviolent', 'unarmed', 'unpopular', 'inadequate', 'uncomfortable', 'unwilling', 'unaffected', 'unfaithful', 'nobody', 'loss', 'without', 'undamaged', 'nothing', 'could not', 'impossible to', 'unaccompanied', 'unlike', 'oppose', 'compromising', 'unmarried', 'rarely', 'unlighted', 'inexperienced', 'rather than', 'unrelated', 'untied', 'dishonest', 'insecure', 'uneven', 'harmless', 'avoid', 'with the exception of', 'no', 'undefeated', 'no longer', 'inadvertently', 'absence', 'lack', 'unconnected', 'unfinished', 'invalid', 'unnecessary', 'invisibility', 'unusual', 'none', 'incredulous', 'impossible', 'never', 'untrained', 'incorrect', 'immobility', 'unclear', 'impartial', 'unlucky', 'deny', 'uncertain', 'hardly', 'unsaturated', 'informal', 'irregular', 'dissatisfaction']


## Training procedure
Use code from huggingface source
### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1  | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| No log        | 1.0   | 4    | 0.1526          | 0.0       | 0.0    | 0.0 | 0.9588   |
| No log        | 2.0   | 8    | 0.0875          | 0.0       | 0.0    | 0.0 | 0.9588   |
| No log        | 3.0   | 12   | 0.0396          | 0.0       | 0.0    | 0.0 | 0.9877   |
| No log        | 4.0   | 16   | 0.0322          | 0.0       | 0.0    | 0.0 | 0.9899   |
| No log        | 5.0   | 20   | 0.0270          | 0.0       | 0.0    | 0.0 | 0.9906   |
| No log        | 6.0   | 24   | 0.0268          | 0.0       | 0.0    | 0.0 | 0.9899   |


### Framework versions

- Transformers 4.25.0.dev0
- Pytorch 1.10.1
- Datasets 2.6.1
- Tokenizers 0.13.1