splusminusx commited on
Commit
d5cd2e3
·
1 Parent(s): 0bc9f70

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -4.32 +/- 2.49
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fcaa70d32c6bd9a2e34bd90600f4e3b458839c7e17d0e9de9f888e0ddbbcc02
3
+ size 108028
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fa69da8e670>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fa69da88980>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1679071231328651905,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAg87PPhgKoryoQg0/g87PPhgKoryoQg0/g87PPhgKoryoQg0/g87PPhgKoryoQg0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA303aP8eForwPGJ+/FMJCv9qVr7/Tf1G/zgsJP2iFlT91W8m/I2jav0H6hT+YlJA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACDzs8+GAqivKhCDT9Bw1I7/RuEu5vkvDuDzs8+GAqivKhCDT9Bw1I7/RuEu5vkvDuDzs8+GAqivKhCDT9Bw1I7/RuEu5vkvDuDzs8+GAqivKhCDT9Bw1I7/RuEu5vkvDuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.40587243 -0.0197802 0.55179834]\n [ 0.40587243 -0.0197802 0.55179834]\n [ 0.40587243 -0.0197802 0.55179834]\n [ 0.40587243 -0.0197802 0.55179834]]",
60
+ "desired_goal": "[[ 1.7055014 -0.01983918 -1.2429217 ]\n [-0.7607739 -1.3717606 -0.8183567 ]\n [ 0.5353364 1.1681337 -1.5731035 ]\n [-1.706303 1.0466996 1.1295347 ]]",
61
+ "observation": "[[ 0.40587243 -0.0197802 0.55179834 0.00321598 -0.00403166 0.00576456]\n [ 0.40587243 -0.0197802 0.55179834 0.00321598 -0.00403166 0.00576456]\n [ 0.40587243 -0.0197802 0.55179834 0.00321598 -0.00403166 0.00576456]\n [ 0.40587243 -0.0197802 0.55179834 0.00321598 -0.00403166 0.00576456]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAFLoHvtLNur0kr5c+0lsbvWuq4L0Af+U9J5SAPfuMvLs33hA+kT4DPr4EAr4R3G0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.13254577 -0.09121288 0.2962581 ]\n [-0.03792936 -0.10970005 0.11205864]\n [ 0.06278258 -0.00575411 0.14147268]\n [ 0.12816836 -0.12697122 0.2322848 ]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIcuCiT/qDsCUhpRSlIwBbJRLMowBdJRHQKeGpA/s3Q51fZQoaAZoCWgPQwgFhxdEpFYSwJSGlFKUaBVLMmgWR0Cnhmfio86ndX2UKGgGaAloD0MItHQF24hHDMCUhpRSlGgVSzJoFkdAp4Yr2QGOdXV9lChoBmgJaA9DCCLBVDNraQjAlIaUUpRoFUsyaBZHQKeFybXpW3l1fZQoaAZoCWgPQwgWaeId4EkNwJSGlFKUaBVLMmgWR0Cnh7WHDaXbdX2UKGgGaAloD0MIYRiw5CoW+L+UhpRSlGgVSzJoFkdAp4d5cLSeAnV9lChoBmgJaA9DCDpY/+cwHwHAlIaUUpRoFUsyaBZHQKeHPUn5SFZ1fZQoaAZoCWgPQwhkWpvG9hr8v5SGlFKUaBVLMmgWR0CnhtrUkOZtdX2UKGgGaAloD0MI6EoEqn8AEMCUhpRSlGgVSzJoFkdAp4jSjYZl4HV9lChoBmgJaA9DCFWkwthCkOi/lIaUUpRoFUsyaBZHQKeIln6l+E11fZQoaAZoCWgPQwhyFva0w28QwJSGlFKUaBVLMmgWR0CniFpNCZ4OdX2UKGgGaAloD0MIPlsHB3sT3b+UhpRSlGgVSzJoFkdAp4f3420iQnV9lChoBmgJaA9DCAsnaf6YVvq/lIaUUpRoFUsyaBZHQKeJ5b212JV1fZQoaAZoCWgPQwjBHhMpzcYHwJSGlFKUaBVLMmgWR0CniamnwXqJdX2UKGgGaAloD0MIvJUlOstMCMCUhpRSlGgVSzJoFkdAp4ltdAxBV3V9lChoBmgJaA9DCFTjpZvEgATAlIaUUpRoFUsyaBZHQKeJCvL5h0B1fZQoaAZoCWgPQwjChxIteTwLwJSGlFKUaBVLMmgWR0CniwL6DXe4dX2UKGgGaAloD0MIYsCSq1h8B8CUhpRSlGgVSzJoFkdAp4rG8Gs3hnV9lChoBmgJaA9DCDcY6rDCbRfAlIaUUpRoFUsyaBZHQKeKirU9ZA91fZQoaAZoCWgPQwiRtYZSezEPwJSGlFKUaBVLMmgWR0Cniigkka/AdX2UKGgGaAloD0MI02achqgC8L+UhpRSlGgVSzJoFkdAp4wgN7SiNHV9lChoBmgJaA9DCI/66xUW3P2/lIaUUpRoFUsyaBZHQKeL5FQVKwp1fZQoaAZoCWgPQwhbsb/snnz5v5SGlFKUaBVLMmgWR0Cni6hakhzOdX2UKGgGaAloD0MIz79d9utuAsCUhpRSlGgVSzJoFkdAp4tF6mfoR3V9lChoBmgJaA9DCERMiSR6uQfAlIaUUpRoFUsyaBZHQKeN4ZDRc/t1fZQoaAZoCWgPQwjw+PauQf8TwJSGlFKUaBVLMmgWR0CnjaZVXFLndX2UKGgGaAloD0MIhzJUxVS6A8CUhpRSlGgVSzJoFkdAp41q8an753V9lChoBmgJaA9DCENwXMZNrQPAlIaUUpRoFUsyaBZHQKeNCTV2A5J1fZQoaAZoCWgPQwiKdhVSfvIEwJSGlFKUaBVLMmgWR0Cnj6fywwCbdX2UKGgGaAloD0MI14aKcf4m/b+UhpRSlGgVSzJoFkdAp49skrwvx3V9lChoBmgJaA9DCLMo7KLo4QPAlIaUUpRoFUsyaBZHQKePMREnb7F1fZQoaAZoCWgPQwg4aRoUzUPzv5SGlFKUaBVLMmgWR0Cnjs9k8RthdX2UKGgGaAloD0MIFLLzNjb7+r+UhpRSlGgVSzJoFkdAp5F0clw97nV9lChoBmgJaA9DCFdgyOpWbwHAlIaUUpRoFUsyaBZHQKeROQ176YV1fZQoaAZoCWgPQwgDste7Px77v5SGlFKUaBVLMmgWR0CnkP1/tpmFdX2UKGgGaAloD0MIoKcBg6RPB8CUhpRSlGgVSzJoFkdAp5Cb6k6903V9lChoBmgJaA9DCDv7yoP0VAzAlIaUUpRoFUsyaBZHQKeTWTTOPeZ1fZQoaAZoCWgPQwhM4NbdPFUQwJSGlFKUaBVLMmgWR0Cnkx49Pk7wdX2UKGgGaAloD0MIByl4CrlyBcCUhpRSlGgVSzJoFkdAp5LjJbMX8HV9lChoBmgJaA9DCLQCQ1a3evm/lIaUUpRoFUsyaBZHQKeSga/h2nt1fZQoaAZoCWgPQwjQQ20bRmEDwJSGlFKUaBVLMmgWR0CnlSJLmITHdX2UKGgGaAloD0MI48Yt5ufG+b+UhpRSlGgVSzJoFkdAp5TnFYMfBHV9lChoBmgJaA9DCDbJj/gVa/2/lIaUUpRoFUsyaBZHQKeUq8zQ/ot1fZQoaAZoCWgPQwgkJT0MrY74v5SGlFKUaBVLMmgWR0CnlEom5UcXdX2UKGgGaAloD0MIz9csl43OEMCUhpRSlGgVSzJoFkdAp5a1/e+EiHV9lChoBmgJaA9DCKFJYkm5exDAlIaUUpRoFUsyaBZHQKeWeeyzHCJ1fZQoaAZoCWgPQwjVITfDDbgAwJSGlFKUaBVLMmgWR0Cnlj2V3Ux3dX2UKGgGaAloD0MIjDGwjuMHD8CUhpRSlGgVSzJoFkdAp5XbAUL2H3V9lChoBmgJaA9DCFlMbD6uLQnAlIaUUpRoFUsyaBZHQKeXynl4keJ1fZQoaAZoCWgPQwjSxhFr8an7v5SGlFKUaBVLMmgWR0Cnl45p8F6idX2UKGgGaAloD0MIxmrz/6ojEMCUhpRSlGgVSzJoFkdAp5dSKLsKLXV9lChoBmgJaA9DCB0FiIIZcwPAlIaUUpRoFUsyaBZHQKeW749HMEB1fZQoaAZoCWgPQwjfo/56heUTwJSGlFKUaBVLMmgWR0CnmOAYP5HmdX2UKGgGaAloD0MIUg5mE2C4BcCUhpRSlGgVSzJoFkdAp5ikDQqqfnV9lChoBmgJaA9DCLQDritmJALAlIaUUpRoFUsyaBZHQKeYZ9E1EVp1fZQoaAZoCWgPQwj+mNamsT0EwJSGlFKUaBVLMmgWR0CnmAVCojwAdX2UKGgGaAloD0MIWg70UNsGCMCUhpRSlGgVSzJoFkdAp5n1RaX8fnV9lChoBmgJaA9DCICeBgyS3gvAlIaUUpRoFUsyaBZHQKeZuSXdCVt1fZQoaAZoCWgPQwjaOc0C7f4TwJSGlFKUaBVLMmgWR0CnmXzxoZhsdX2UKGgGaAloD0MIfsUaLnIP+r+UhpRSlGgVSzJoFkdAp5kab8WKuXV9lChoBmgJaA9DCG9lic4ySwvAlIaUUpRoFUsyaBZHQKebE4iHIp91fZQoaAZoCWgPQwgsKAzKNDoYwJSGlFKUaBVLMmgWR0CnmteMhougdX2UKGgGaAloD0MIfc7drpe2EcCUhpRSlGgVSzJoFkdAp5qbWuoxYnV9lChoBmgJaA9DCO5Cc51GWhDAlIaUUpRoFUsyaBZHQKeaOOAiFCd1fZQoaAZoCWgPQwgpIO1/gDUUwJSGlFKUaBVLMmgWR0CnnCxhDw6RdX2UKGgGaAloD0MIpHITtTQ3/7+UhpRSlGgVSzJoFkdAp5vwVZcLSnV9lChoBmgJaA9DCFewjXiyewzAlIaUUpRoFUsyaBZHQKebtBVMmF91fZQoaAZoCWgPQwitwmaAC3ICwJSGlFKUaBVLMmgWR0Cnm1GD15B1dX2UKGgGaAloD0MIycuaWOBLEMCUhpRSlGgVSzJoFkdAp50+m1pj+nV9lChoBmgJaA9DCJaWkXpPhQvAlIaUUpRoFUsyaBZHQKedAoH9m6J1fZQoaAZoCWgPQwjzAYHOpE3pv5SGlFKUaBVLMmgWR0CnnMZHNHH4dX2UKGgGaAloD0MI409UNqzpA8CUhpRSlGgVSzJoFkdAp5xjzf779HV9lChoBmgJaA9DCGWPUDOkqhLAlIaUUpRoFUsyaBZHQKeebEtNBWx1fZQoaAZoCWgPQwgr3zMSoTETwJSGlFKUaBVLMmgWR0CnnjA62fCidX2UKGgGaAloD0MIZtgo6zczEsCUhpRSlGgVSzJoFkdAp53z+xW1dHV9lChoBmgJaA9DCJvicVEtIvm/lIaUUpRoFUsyaBZHQKedkY/mknF1fZQoaAZoCWgPQwicpPljWssgwJSGlFKUaBVLMmgWR0Cnn6VIZqEfdX2UKGgGaAloD0MIbjKqDONu8r+UhpRSlGgVSzJoFkdAp59qaw2VFHV9lChoBmgJaA9DCIjZy7bT3iDAlIaUUpRoFUsyaBZHQKefLliBoVV1fZQoaAZoCWgPQwjwhjQqcJIBwJSGlFKUaBVLMmgWR0Cnnsv9DQZ5dX2UKGgGaAloD0MIQFHZsKayAcCUhpRSlGgVSzJoFkdAp6DQ4lyBCnV9lChoBmgJaA9DCJLn+j4cBAfAlIaUUpRoFUsyaBZHQKeglMW43FV1fZQoaAZoCWgPQwi0rWad8aUlwJSGlFKUaBVLMmgWR0CnoFibDuSfdX2UKGgGaAloD0MIDD84nzqGGcCUhpRSlGgVSzJoFkdAp5/2Jzkp7XV9lChoBmgJaA9DCN6tLNFZhhDAlIaUUpRoFUsyaBZHQKeiA1TBInV1fZQoaAZoCWgPQwgSUOEIUun9v5SGlFKUaBVLMmgWR0CnocgLZzxPdX2UKGgGaAloD0MIvhHds67RCMCUhpRSlGgVSzJoFkdAp6GL1GsmwHV9lChoBmgJaA9DCD1hiQeUTfm/lIaUUpRoFUsyaBZHQKehKVi4J/p1fZQoaAZoCWgPQwgbDksDP4oFwJSGlFKUaBVLMmgWR0CnoyQhW5pbdX2UKGgGaAloD0MIGhU42Qau/r+UhpRSlGgVSzJoFkdAp6LoFotcwHV9lChoBmgJaA9DCI3SpX9JmhTAlIaUUpRoFUsyaBZHQKeiq/+sHSp1fZQoaAZoCWgPQwj6KY4Dr5YJwJSGlFKUaBVLMmgWR0Cnokm5+YtydX2UKGgGaAloD0MImgewyK9fBMCUhpRSlGgVSzJoFkdAp6RHOnl4knV9lChoBmgJaA9DCBE10eejTPO/lIaUUpRoFUsyaBZHQKekC0XP7el1fZQoaAZoCWgPQwhblq/L8D8HwJSGlFKUaBVLMmgWR0Cno88S5AhTdX2UKGgGaAloD0MIclKY9zgzA8CUhpRSlGgVSzJoFkdAp6NslzEJjXV9lChoBmgJaA9DCGvylNV0vQ3AlIaUUpRoFUsyaBZHQKelYqrBCUp1fZQoaAZoCWgPQwgfLGNDN7sGwJSGlFKUaBVLMmgWR0CnpSawMYuTdX2UKGgGaAloD0MItd5vtON2GcCUhpRSlGgVSzJoFkdAp6TqeCkGinV9lChoBmgJaA9DCDY8vVKWIRDAlIaUUpRoFUsyaBZHQKekiAZsKsx1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9aa6626057116a3439625402f03ca0b6b849be1b0ca73e4717a13fe6329c9a8
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f096d16f23ef154447b22de181dbef683609e44017b92c2b2a3acc68913f8f82
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fa69da8e670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa69da88980>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679071231328651905, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAg87PPhgKoryoQg0/g87PPhgKoryoQg0/g87PPhgKoryoQg0/g87PPhgKoryoQg0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA303aP8eForwPGJ+/FMJCv9qVr7/Tf1G/zgsJP2iFlT91W8m/I2jav0H6hT+YlJA/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACDzs8+GAqivKhCDT9Bw1I7/RuEu5vkvDuDzs8+GAqivKhCDT9Bw1I7/RuEu5vkvDuDzs8+GAqivKhCDT9Bw1I7/RuEu5vkvDuDzs8+GAqivKhCDT9Bw1I7/RuEu5vkvDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40587243 -0.0197802 0.55179834]\n [ 0.40587243 -0.0197802 0.55179834]\n [ 0.40587243 -0.0197802 0.55179834]\n [ 0.40587243 -0.0197802 0.55179834]]", "desired_goal": "[[ 1.7055014 -0.01983918 -1.2429217 ]\n [-0.7607739 -1.3717606 -0.8183567 ]\n [ 0.5353364 1.1681337 -1.5731035 ]\n [-1.706303 1.0466996 1.1295347 ]]", "observation": "[[ 0.40587243 -0.0197802 0.55179834 0.00321598 -0.00403166 0.00576456]\n [ 0.40587243 -0.0197802 0.55179834 0.00321598 -0.00403166 0.00576456]\n [ 0.40587243 -0.0197802 0.55179834 0.00321598 -0.00403166 0.00576456]\n [ 0.40587243 -0.0197802 0.55179834 0.00321598 -0.00403166 0.00576456]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAFLoHvtLNur0kr5c+0lsbvWuq4L0Af+U9J5SAPfuMvLs33hA+kT4DPr4EAr4R3G0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13254577 -0.09121288 0.2962581 ]\n [-0.03792936 -0.10970005 0.11205864]\n [ 0.06278258 -0.00575411 0.14147268]\n [ 0.12816836 -0.12697122 0.2322848 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIcuCiT/qDsCUhpRSlIwBbJRLMowBdJRHQKeGpA/s3Q51fZQoaAZoCWgPQwgFhxdEpFYSwJSGlFKUaBVLMmgWR0Cnhmfio86ndX2UKGgGaAloD0MItHQF24hHDMCUhpRSlGgVSzJoFkdAp4Yr2QGOdXV9lChoBmgJaA9DCCLBVDNraQjAlIaUUpRoFUsyaBZHQKeFybXpW3l1fZQoaAZoCWgPQwgWaeId4EkNwJSGlFKUaBVLMmgWR0Cnh7WHDaXbdX2UKGgGaAloD0MIYRiw5CoW+L+UhpRSlGgVSzJoFkdAp4d5cLSeAnV9lChoBmgJaA9DCDpY/+cwHwHAlIaUUpRoFUsyaBZHQKeHPUn5SFZ1fZQoaAZoCWgPQwhkWpvG9hr8v5SGlFKUaBVLMmgWR0CnhtrUkOZtdX2UKGgGaAloD0MI6EoEqn8AEMCUhpRSlGgVSzJoFkdAp4jSjYZl4HV9lChoBmgJaA9DCFWkwthCkOi/lIaUUpRoFUsyaBZHQKeIln6l+E11fZQoaAZoCWgPQwhyFva0w28QwJSGlFKUaBVLMmgWR0CniFpNCZ4OdX2UKGgGaAloD0MIPlsHB3sT3b+UhpRSlGgVSzJoFkdAp4f3420iQnV9lChoBmgJaA9DCAsnaf6YVvq/lIaUUpRoFUsyaBZHQKeJ5b212JV1fZQoaAZoCWgPQwjBHhMpzcYHwJSGlFKUaBVLMmgWR0CniamnwXqJdX2UKGgGaAloD0MIvJUlOstMCMCUhpRSlGgVSzJoFkdAp4ltdAxBV3V9lChoBmgJaA9DCFTjpZvEgATAlIaUUpRoFUsyaBZHQKeJCvL5h0B1fZQoaAZoCWgPQwjChxIteTwLwJSGlFKUaBVLMmgWR0CniwL6DXe4dX2UKGgGaAloD0MIYsCSq1h8B8CUhpRSlGgVSzJoFkdAp4rG8Gs3hnV9lChoBmgJaA9DCDcY6rDCbRfAlIaUUpRoFUsyaBZHQKeKirU9ZA91fZQoaAZoCWgPQwiRtYZSezEPwJSGlFKUaBVLMmgWR0Cniigkka/AdX2UKGgGaAloD0MI02achqgC8L+UhpRSlGgVSzJoFkdAp4wgN7SiNHV9lChoBmgJaA9DCI/66xUW3P2/lIaUUpRoFUsyaBZHQKeL5FQVKwp1fZQoaAZoCWgPQwhbsb/snnz5v5SGlFKUaBVLMmgWR0Cni6hakhzOdX2UKGgGaAloD0MIz79d9utuAsCUhpRSlGgVSzJoFkdAp4tF6mfoR3V9lChoBmgJaA9DCERMiSR6uQfAlIaUUpRoFUsyaBZHQKeN4ZDRc/t1fZQoaAZoCWgPQwjw+PauQf8TwJSGlFKUaBVLMmgWR0CnjaZVXFLndX2UKGgGaAloD0MIhzJUxVS6A8CUhpRSlGgVSzJoFkdAp41q8an753V9lChoBmgJaA9DCENwXMZNrQPAlIaUUpRoFUsyaBZHQKeNCTV2A5J1fZQoaAZoCWgPQwiKdhVSfvIEwJSGlFKUaBVLMmgWR0Cnj6fywwCbdX2UKGgGaAloD0MI14aKcf4m/b+UhpRSlGgVSzJoFkdAp49skrwvx3V9lChoBmgJaA9DCLMo7KLo4QPAlIaUUpRoFUsyaBZHQKePMREnb7F1fZQoaAZoCWgPQwg4aRoUzUPzv5SGlFKUaBVLMmgWR0Cnjs9k8RthdX2UKGgGaAloD0MIFLLzNjb7+r+UhpRSlGgVSzJoFkdAp5F0clw97nV9lChoBmgJaA9DCFdgyOpWbwHAlIaUUpRoFUsyaBZHQKeROQ176YV1fZQoaAZoCWgPQwgDste7Px77v5SGlFKUaBVLMmgWR0CnkP1/tpmFdX2UKGgGaAloD0MIoKcBg6RPB8CUhpRSlGgVSzJoFkdAp5Cb6k6903V9lChoBmgJaA9DCDv7yoP0VAzAlIaUUpRoFUsyaBZHQKeTWTTOPeZ1fZQoaAZoCWgPQwhM4NbdPFUQwJSGlFKUaBVLMmgWR0Cnkx49Pk7wdX2UKGgGaAloD0MIByl4CrlyBcCUhpRSlGgVSzJoFkdAp5LjJbMX8HV9lChoBmgJaA9DCLQCQ1a3evm/lIaUUpRoFUsyaBZHQKeSga/h2nt1fZQoaAZoCWgPQwjQQ20bRmEDwJSGlFKUaBVLMmgWR0CnlSJLmITHdX2UKGgGaAloD0MI48Yt5ufG+b+UhpRSlGgVSzJoFkdAp5TnFYMfBHV9lChoBmgJaA9DCDbJj/gVa/2/lIaUUpRoFUsyaBZHQKeUq8zQ/ot1fZQoaAZoCWgPQwgkJT0MrY74v5SGlFKUaBVLMmgWR0CnlEom5UcXdX2UKGgGaAloD0MIz9csl43OEMCUhpRSlGgVSzJoFkdAp5a1/e+EiHV9lChoBmgJaA9DCKFJYkm5exDAlIaUUpRoFUsyaBZHQKeWeeyzHCJ1fZQoaAZoCWgPQwjVITfDDbgAwJSGlFKUaBVLMmgWR0Cnlj2V3Ux3dX2UKGgGaAloD0MIjDGwjuMHD8CUhpRSlGgVSzJoFkdAp5XbAUL2H3V9lChoBmgJaA9DCFlMbD6uLQnAlIaUUpRoFUsyaBZHQKeXynl4keJ1fZQoaAZoCWgPQwjSxhFr8an7v5SGlFKUaBVLMmgWR0Cnl45p8F6idX2UKGgGaAloD0MIxmrz/6ojEMCUhpRSlGgVSzJoFkdAp5dSKLsKLXV9lChoBmgJaA9DCB0FiIIZcwPAlIaUUpRoFUsyaBZHQKeW749HMEB1fZQoaAZoCWgPQwjfo/56heUTwJSGlFKUaBVLMmgWR0CnmOAYP5HmdX2UKGgGaAloD0MIUg5mE2C4BcCUhpRSlGgVSzJoFkdAp5ikDQqqfnV9lChoBmgJaA9DCLQDritmJALAlIaUUpRoFUsyaBZHQKeYZ9E1EVp1fZQoaAZoCWgPQwj+mNamsT0EwJSGlFKUaBVLMmgWR0CnmAVCojwAdX2UKGgGaAloD0MIWg70UNsGCMCUhpRSlGgVSzJoFkdAp5n1RaX8fnV9lChoBmgJaA9DCICeBgyS3gvAlIaUUpRoFUsyaBZHQKeZuSXdCVt1fZQoaAZoCWgPQwjaOc0C7f4TwJSGlFKUaBVLMmgWR0CnmXzxoZhsdX2UKGgGaAloD0MIfsUaLnIP+r+UhpRSlGgVSzJoFkdAp5kab8WKuXV9lChoBmgJaA9DCG9lic4ySwvAlIaUUpRoFUsyaBZHQKebE4iHIp91fZQoaAZoCWgPQwgsKAzKNDoYwJSGlFKUaBVLMmgWR0CnmteMhougdX2UKGgGaAloD0MIfc7drpe2EcCUhpRSlGgVSzJoFkdAp5qbWuoxYnV9lChoBmgJaA9DCO5Cc51GWhDAlIaUUpRoFUsyaBZHQKeaOOAiFCd1fZQoaAZoCWgPQwgpIO1/gDUUwJSGlFKUaBVLMmgWR0CnnCxhDw6RdX2UKGgGaAloD0MIpHITtTQ3/7+UhpRSlGgVSzJoFkdAp5vwVZcLSnV9lChoBmgJaA9DCFewjXiyewzAlIaUUpRoFUsyaBZHQKebtBVMmF91fZQoaAZoCWgPQwitwmaAC3ICwJSGlFKUaBVLMmgWR0Cnm1GD15B1dX2UKGgGaAloD0MIycuaWOBLEMCUhpRSlGgVSzJoFkdAp50+m1pj+nV9lChoBmgJaA9DCJaWkXpPhQvAlIaUUpRoFUsyaBZHQKedAoH9m6J1fZQoaAZoCWgPQwjzAYHOpE3pv5SGlFKUaBVLMmgWR0CnnMZHNHH4dX2UKGgGaAloD0MI409UNqzpA8CUhpRSlGgVSzJoFkdAp5xjzf779HV9lChoBmgJaA9DCGWPUDOkqhLAlIaUUpRoFUsyaBZHQKeebEtNBWx1fZQoaAZoCWgPQwgr3zMSoTETwJSGlFKUaBVLMmgWR0CnnjA62fCidX2UKGgGaAloD0MIZtgo6zczEsCUhpRSlGgVSzJoFkdAp53z+xW1dHV9lChoBmgJaA9DCJvicVEtIvm/lIaUUpRoFUsyaBZHQKedkY/mknF1fZQoaAZoCWgPQwicpPljWssgwJSGlFKUaBVLMmgWR0Cnn6VIZqEfdX2UKGgGaAloD0MIbjKqDONu8r+UhpRSlGgVSzJoFkdAp59qaw2VFHV9lChoBmgJaA9DCIjZy7bT3iDAlIaUUpRoFUsyaBZHQKefLliBoVV1fZQoaAZoCWgPQwjwhjQqcJIBwJSGlFKUaBVLMmgWR0Cnnsv9DQZ5dX2UKGgGaAloD0MIQFHZsKayAcCUhpRSlGgVSzJoFkdAp6DQ4lyBCnV9lChoBmgJaA9DCJLn+j4cBAfAlIaUUpRoFUsyaBZHQKeglMW43FV1fZQoaAZoCWgPQwi0rWad8aUlwJSGlFKUaBVLMmgWR0CnoFibDuSfdX2UKGgGaAloD0MIDD84nzqGGcCUhpRSlGgVSzJoFkdAp5/2Jzkp7XV9lChoBmgJaA9DCN6tLNFZhhDAlIaUUpRoFUsyaBZHQKeiA1TBInV1fZQoaAZoCWgPQwgSUOEIUun9v5SGlFKUaBVLMmgWR0CnocgLZzxPdX2UKGgGaAloD0MIvhHds67RCMCUhpRSlGgVSzJoFkdAp6GL1GsmwHV9lChoBmgJaA9DCD1hiQeUTfm/lIaUUpRoFUsyaBZHQKehKVi4J/p1fZQoaAZoCWgPQwgbDksDP4oFwJSGlFKUaBVLMmgWR0CnoyQhW5pbdX2UKGgGaAloD0MIGhU42Qau/r+UhpRSlGgVSzJoFkdAp6LoFotcwHV9lChoBmgJaA9DCI3SpX9JmhTAlIaUUpRoFUsyaBZHQKeiq/+sHSp1fZQoaAZoCWgPQwj6KY4Dr5YJwJSGlFKUaBVLMmgWR0Cnokm5+YtydX2UKGgGaAloD0MImgewyK9fBMCUhpRSlGgVSzJoFkdAp6RHOnl4knV9lChoBmgJaA9DCBE10eejTPO/lIaUUpRoFUsyaBZHQKekC0XP7el1fZQoaAZoCWgPQwhblq/L8D8HwJSGlFKUaBVLMmgWR0Cno88S5AhTdX2UKGgGaAloD0MIclKY9zgzA8CUhpRSlGgVSzJoFkdAp6NslzEJjXV9lChoBmgJaA9DCGvylNV0vQ3AlIaUUpRoFUsyaBZHQKelYqrBCUp1fZQoaAZoCWgPQwgfLGNDN7sGwJSGlFKUaBVLMmgWR0CnpSawMYuTdX2UKGgGaAloD0MItd5vtON2GcCUhpRSlGgVSzJoFkdAp6TqeCkGinV9lChoBmgJaA9DCDY8vVKWIRDAlIaUUpRoFUsyaBZHQKekiAZsKsx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (403 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -4.324760475754738, "std_reward": 2.490431869953051, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-17T17:30:57.828789"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a179570c44f8a414955abc8a2cda689896e179208fdd2bf607bc6d830e187165
3
+ size 3056