sphyuung commited on
Commit
42781e5
·
verified ·
1 Parent(s): 20d6aea

Training complete

Browse files
Files changed (1) hide show
  1. README.md +12 -12
README.md CHANGED
@@ -26,16 +26,16 @@ model-index:
26
  metrics:
27
  - name: Precision
28
  type: precision
29
- value: 0.9367949568679496
30
  - name: Recall
31
  type: recall
32
- value: 0.9503534163581285
33
  - name: F1
34
  type: f1
35
- value: 0.9435254803675855
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.9859304173779949
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
45
 
46
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.0632
49
- - Precision: 0.9368
50
- - Recall: 0.9504
51
- - F1: 0.9435
52
- - Accuracy: 0.9859
53
 
54
  ## Model description
55
 
@@ -80,9 +80,9 @@ The following hyperparameters were used during training:
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
- | 0.0764 | 1.0 | 1756 | 0.0685 | 0.9089 | 0.9347 | 0.9216 | 0.9810 |
84
- | 0.034 | 2.0 | 3512 | 0.0657 | 0.9282 | 0.9465 | 0.9373 | 0.9850 |
85
- | 0.0211 | 3.0 | 5268 | 0.0632 | 0.9368 | 0.9504 | 0.9435 | 0.9859 |
86
 
87
 
88
  ### Framework versions
 
26
  metrics:
27
  - name: Precision
28
  type: precision
29
+ value: 0.9337190082644629
30
  - name: Recall
31
  type: recall
32
+ value: 0.9506900033658701
33
  - name: F1
34
  type: f1
35
+ value: 0.9421280853902602
36
  - name: Accuracy
37
  type: accuracy
38
+ value: 0.9864602342968152
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
45
 
46
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
47
  It achieves the following results on the evaluation set:
48
+ - Loss: 0.0628
49
+ - Precision: 0.9337
50
+ - Recall: 0.9507
51
+ - F1: 0.9421
52
+ - Accuracy: 0.9865
53
 
54
  ## Model description
55
 
 
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | 0.0773 | 1.0 | 1756 | 0.0695 | 0.9043 | 0.9302 | 0.9170 | 0.9808 |
84
+ | 0.0351 | 2.0 | 3512 | 0.0662 | 0.9337 | 0.9455 | 0.9395 | 0.9855 |
85
+ | 0.0225 | 3.0 | 5268 | 0.0628 | 0.9337 | 0.9507 | 0.9421 | 0.9865 |
86
 
87
 
88
  ### Framework versions