Training complete
Browse files
README.md
CHANGED
@@ -26,16 +26,16 @@ model-index:
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
-
value: 0.
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
-
value: 0.
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
-
value: 0.
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
-
value: 0.
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
45 |
|
46 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
-
- Loss: 0.
|
49 |
-
- Precision: 0.
|
50 |
-
- Recall: 0.
|
51 |
-
- F1: 0.
|
52 |
-
- Accuracy: 0.
|
53 |
|
54 |
## Model description
|
55 |
|
@@ -80,9 +80,9 @@ The following hyperparameters were used during training:
|
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
|
87 |
|
88 |
### Framework versions
|
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
+
value: 0.9337190082644629
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
+
value: 0.9506900033658701
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
+
value: 0.9421280853902602
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
+
value: 0.9864602342968152
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
45 |
|
46 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.0628
|
49 |
+
- Precision: 0.9337
|
50 |
+
- Recall: 0.9507
|
51 |
+
- F1: 0.9421
|
52 |
+
- Accuracy: 0.9865
|
53 |
|
54 |
## Model description
|
55 |
|
|
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
+
| 0.0773 | 1.0 | 1756 | 0.0695 | 0.9043 | 0.9302 | 0.9170 | 0.9808 |
|
84 |
+
| 0.0351 | 2.0 | 3512 | 0.0662 | 0.9337 | 0.9455 | 0.9395 | 0.9855 |
|
85 |
+
| 0.0225 | 3.0 | 5268 | 0.0628 | 0.9337 | 0.9507 | 0.9421 | 0.9865 |
|
86 |
|
87 |
|
88 |
### Framework versions
|