speechbrainteam commited on
Commit
edc9f92
1 Parent(s): f475678

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -3
README.md CHANGED
@@ -92,13 +92,14 @@ Sometimes it is useful to jointly visualize the VAD output with the input signal
92
  To do it:
93
 
94
  ```python
95
- upsampled_boundaries = VAD.upsample_boundaries(boundaries, audio_file)
96
- torchaudio.save('vad_final.wav', upsampled_boundaries.cpu(), sample_rate)
 
97
  ```
98
 
99
  This creates a "VAD signal" with the same dimensionality as the original signal.
100
 
101
- You can now open *vad_final.wav* and *speechbrain/vad_example.wav* with software like audacity to visualize them jointly.
102
 
103
 
104
  ### VAD pipeline details
@@ -117,6 +118,7 @@ We designed the VAD such that you can have access to all of these steps (this mi
117
  ```python
118
 
119
  # 1- Let's compute frame-level posteriors first
 
120
  prob_chunks = VAD.get_speech_prob_file(audio_file)
121
 
122
  # 2- Let's apply a threshold on top of the posteriors
 
92
  To do it:
93
 
94
  ```python
95
+ import torchaudio
96
+ upsampled_boundaries = VAD.upsample_boundaries(boundaries, 'pretrained_model_checkpoints/example_vad.wav')
97
+ torchaudio.save('vad_final.wav', upsampled_boundaries.cpu(), 16000)
98
  ```
99
 
100
  This creates a "VAD signal" with the same dimensionality as the original signal.
101
 
102
+ You can now open *vad_final.wav* and *pretrained_model_checkpoints/example_vad.wav* with software like audacity to visualize them jointly.
103
 
104
 
105
  ### VAD pipeline details
 
118
  ```python
119
 
120
  # 1- Let's compute frame-level posteriors first
121
+ audio_file = 'pretrained_model_checkpoints/example_vad.wav'
122
  prob_chunks = VAD.get_speech_prob_file(audio_file)
123
 
124
  # 2- Let's apply a threshold on top of the posteriors