File size: 4,653 Bytes
218decd
 
 
 
 
2d8381e
ac7e31d
 
218decd
2d8381e
218decd
ac7e31d
218decd
 
2d8381e
218decd
ac7e31d
 
218decd
 
 
 
 
2d8381e
218decd
2d8381e
 
 
ac7e31d
2d8381e
ac7e31d
218decd
 
ac7e31d
218decd
2d8381e
218decd
2d8381e
218decd
 
 
2d8381e
218decd
 
 
 
 
 
 
 
 
 
 
 
2d8381e
218decd
 
 
 
2d8381e
 
ac7e31d
218decd
 
 
 
 
 
2d8381e
218decd
 
 
 
 
 
 
 
 
 
 
 
 
 
2d8381e
 
218decd
 
2d8381e
218decd
 
 
 
2d8381e
 
 
 
 
 
 
 
 
 
 
 
 
 
218decd
 
 
2d8381e
 
 
 
 
 
 
 
ac7e31d
 
218decd
 
 
 
 
 
 
 
 
 
2d8381e
218decd
 
 
 
 
 
 
 
 
ac7e31d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
language: "en"
thumbnail:
tags:
- embeddings
- Sound
- Keywords
- Keyword Spotting
- pytorch
- ECAPA-TDNN
- TDNN
- Command Recognition
license: "apache-2.0"
datasets:
- Urbansound8k
metrics:
- Accuracy

---

<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
<br/><br/>

# Command Recognition with ECAPA embeddings on UrbanSoudnd8k

This repository provides all the necessary tools to perform sound recognition with SpeechBrain using a model pretrained on UrbanSound8k.
You can download the dataset [here](https://urbansounddataset.weebly.com/urbansound8k.html)
The provided system can recognize the following 10 keywords:
```
dog_bark, children_playing, air_conditioner, street_music, gun_shot, siren, engine_idling, jackhammer, drilling, car_horn
```

For a better experience, we encourage you to learn more about
[SpeechBrain](https://speechbrain.github.io). The given model performance on the test set is:

| Release | Accuracy 1-fold (%)
|:-------------:|:--------------:|
| 04-06-21 | 75.5 | 


## Pipeline description
This system is composed of a ECAPA model coupled with statistical pooling. A classifier, trained with Categorical Cross-Entropy Loss, is applied on top of that.

## Install SpeechBrain

First of all, please install SpeechBrain with the following command:

```
pip install speechbrain
```

Please notice that we encourage you to read our tutorials and learn more about
[SpeechBrain](https://speechbrain.github.io).

### Perform Sound Recognition

```python
import torchaudio
from speechbrain.pretrained import EncoderClassifier
classifier = EncoderClassifier.from_hparams(source="speechbrain/urbansound8k_ecapa", savedir="pretrained_models/gurbansound8k_ecapa")
out_prob, score, index, text_lab = classifier.classify_file('speechbrain/urbansound8k_ecapa/dog_bark.wav')
print(text_lab)
```

### Inference on GPU
To perform inference on the GPU, add  `run_opts={"device":"cuda"}`  when calling the `from_hparams` method.

### Training
The model was trained with SpeechBrain (8cab8b0c).
To train it from scratch follows these steps:
1. Clone SpeechBrain:
```bash
git clone https://github.com/speechbrain/speechbrain/
```
2. Install it:
```
cd speechbrain
pip install -r requirements.txt
pip install -e .
```

3. Run Training:
```
cd recipes/UrbanSound8k/SoundClassification
python train.py hparams/train_ecapa_tdnn.yaml --data_folder=your_data_folder
```

You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/1sItfg_WNuGX6h2dCs8JTGq2v2QoNTaUg?usp=sharing).

### Limitations
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.

#### Referencing ECAPA
```@inproceedings{DBLP:conf/interspeech/DesplanquesTD20,
  author    = {Brecht Desplanques and
               Jenthe Thienpondt and
               Kris Demuynck},
  editor    = {Helen Meng and
               Bo Xu and
               Thomas Fang Zheng},
  title     = {{ECAPA-TDNN:} Emphasized Channel Attention, Propagation and Aggregation
               in {TDNN} Based Speaker Verification},
  booktitle = {Interspeech 2020},
  pages     = {3830--3834},
  publisher = {{ISCA}},
  year      = {2020},
}
```

#### Referencing UrbanSound
```@inproceedings{Salamon:UrbanSound:ACMMM:14,
    Author = {Salamon, J. and Jacoby, C. and Bello, J. P.},
    Booktitle = {22nd {ACM} International Conference on Multimedia (ACM-MM'14)},
    Month = {Nov.},
    Pages = {1041--1044},
    Title = {A Dataset and Taxonomy for Urban Sound Research},
    Year = {2014}}
```


#### Referencing SpeechBrain

```
@misc{SB2021,
    author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
    title = {SpeechBrain},
    year = {2021},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\\\\url{https://github.com/speechbrain/speechbrain}},
  }
```

#### About SpeechBrain
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.

Website: https://speechbrain.github.io/

GitHub: https://github.com/speechbrain/speechbrain