upload model
Browse files- .gitattributes +2 -0
- README.md +91 -0
- example_fsc.wav +0 -0
- hyperparams.yaml +90 -0
- model.ckpt +3 -0
- tokenizer.ckpt +3 -0
.gitattributes
CHANGED
@@ -14,3 +14,5 @@
|
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
17 |
+
model.ckpt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
tokenizer.ckpt filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: "en"
|
3 |
+
thumbnail:
|
4 |
+
tags:
|
5 |
+
- Spoken language understanding
|
6 |
+
license: "CC0"
|
7 |
+
datasets:
|
8 |
+
- Timers and Such
|
9 |
+
metrics:
|
10 |
+
- Accuracy
|
11 |
+
|
12 |
+
---
|
13 |
+
|
14 |
+
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
|
15 |
+
<br/><br/>
|
16 |
+
|
17 |
+
|
18 |
+
# End-to-end SLU model for Timers and Such
|
19 |
+
|
20 |
+
Attention-based RNN sequence-to-sequence model for [Timers and Such](https://arxiv.org/abs/2104.01604) trained on the `train-real` subset. This model checkpoint achieves 86.7% accuracy on `test-real`.
|
21 |
+
|
22 |
+
The model uses an ASR model trained on LibriSpeech ([`speechbrain/asr-crdnn-rnnlm-librispeech`](https://huggingface.co/speechbrain/asr-crdnn-rnnlm-librispeech)) to extract features from the input audio, then maps these features to an intent and slot labels using a beam search.
|
23 |
+
|
24 |
+
The dataset has four intents: `SetTimer`, `SetAlarm`, `SimpleMath`, and `UnitConversion`. Try testing the model by saying something like "set a timer for 5 minutes" or "what's 32 degrees Celsius in Fahrenheit?"
|
25 |
+
|
26 |
+
You can try the model on the `math.wav` file included here as follows:
|
27 |
+
```
|
28 |
+
from speechbrain.pretrained import EndToEndSLU
|
29 |
+
slu = EndToEndSLU.from_hparams("speechbrain/slu-timers-and-such-direct-librispeech-asr")
|
30 |
+
slu.decode_file("speechbrain/slu-timers-and-such-direct-librispeech-asr/math.wav")
|
31 |
+
```
|
32 |
+
### Inference on GPU
|
33 |
+
To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
|
34 |
+
|
35 |
+
### Training
|
36 |
+
The model was trained with SpeechBrain (d254489a).
|
37 |
+
To train it from scratch follows these steps:
|
38 |
+
1. Clone SpeechBrain:
|
39 |
+
```bash
|
40 |
+
git clone https://github.com/speechbrain/speechbrain/
|
41 |
+
```
|
42 |
+
2. Install it:
|
43 |
+
```
|
44 |
+
cd speechbrain
|
45 |
+
pip install -r requirements.txt
|
46 |
+
pip install -e .
|
47 |
+
```
|
48 |
+
|
49 |
+
3. Run Training:
|
50 |
+
```
|
51 |
+
cd recipes/timers-and-such/direct
|
52 |
+
python train.py hparams/train.yaml --data_folder=your_data_folder
|
53 |
+
```
|
54 |
+
|
55 |
+
You can find our training results (models, logs, etc) [here](https://drive.google.com/drive/folders/18c2anEv8hx-ZjmEN8AdUA8AZziYIidON?usp=sharing).
|
56 |
+
|
57 |
+
### Limitations
|
58 |
+
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
|
59 |
+
|
60 |
+
#### Referencing SpeechBrain
|
61 |
+
|
62 |
+
```
|
63 |
+
@misc{SB2021,
|
64 |
+
author = {Ravanelli, Mirco and Parcollet, Titouan and Rouhe, Aku and Plantinga, Peter and Rastorgueva, Elena and Lugosch, Loren and Dawalatabad, Nauman and Ju-Chieh, Chou and Heba, Abdel and Grondin, Francois and Aris, William and Liao, Chien-Feng and Cornell, Samuele and Yeh, Sung-Lin and Na, Hwidong and Gao, Yan and Fu, Szu-Wei and Subakan, Cem and De Mori, Renato and Bengio, Yoshua },
|
65 |
+
title = {SpeechBrain},
|
66 |
+
year = {2021},
|
67 |
+
publisher = {GitHub},
|
68 |
+
journal = {GitHub repository},
|
69 |
+
howpublished = {\url{https://github.com/speechbrain/speechbrain}},
|
70 |
+
}
|
71 |
+
```
|
72 |
+
|
73 |
+
#### Referencing Timers and Such
|
74 |
+
|
75 |
+
```
|
76 |
+
@misc{lugosch2021timers,
|
77 |
+
title={Timers and Such: A Practical Benchmark for Spoken Language Understanding with Numbers},
|
78 |
+
author={Lugosch, Loren and Papreja, Piyush and Ravanelli, Mirco and Heba, Abdelwahab and Parcollet, Titouan},
|
79 |
+
year={2021},
|
80 |
+
eprint={2104.01604},
|
81 |
+
archivePrefix={arXiv},
|
82 |
+
primaryClass={cs.CL}
|
83 |
+
}
|
84 |
+
```
|
85 |
+
|
86 |
+
#### About SpeechBrain
|
87 |
+
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.
|
88 |
+
|
89 |
+
Website: https://speechbrain.github.io/
|
90 |
+
|
91 |
+
GitHub: https://github.com/speechbrain/speechbrain
|
example_fsc.wav
ADDED
Binary file (103 kB). View file
|
|
hyperparams.yaml
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ############################################################################
|
2 |
+
# Model: Direct SLU
|
3 |
+
# Encoder: Pre-trained ASR encoder -> LSTM
|
4 |
+
# Decoder: GRU + beamsearch
|
5 |
+
# Tokens: BPE with unigram
|
6 |
+
# losses: NLL
|
7 |
+
# Training: Fluent Speech Commands
|
8 |
+
# Authors: Loren Lugosch, Mirco Ravanelli 2020
|
9 |
+
# ############################################################################
|
10 |
+
|
11 |
+
# Model parameters
|
12 |
+
sample_rate: 16000
|
13 |
+
emb_size: 128
|
14 |
+
dec_neurons: 512
|
15 |
+
output_neurons: 51 # index(eos/bos) = 0
|
16 |
+
ASR_encoder_dim: 512
|
17 |
+
encoder_dim: 256
|
18 |
+
|
19 |
+
# Decoding parameters
|
20 |
+
bos_index: 0
|
21 |
+
eos_index: 0
|
22 |
+
min_decode_ratio: 0.0
|
23 |
+
max_decode_ratio: 10.0
|
24 |
+
slu_beam_size: 80
|
25 |
+
eos_threshold: 1.5
|
26 |
+
temperature: 1.25
|
27 |
+
|
28 |
+
# Models
|
29 |
+
asr_model_source: speechbrain/asr-crdnn-rnnlm-librispeech
|
30 |
+
|
31 |
+
slu_enc: !new:speechbrain.nnet.containers.Sequential
|
32 |
+
input_shape: [null, null, !ref <ASR_encoder_dim>]
|
33 |
+
lstm: !new:speechbrain.nnet.RNN.LSTM
|
34 |
+
input_size: !ref <ASR_encoder_dim>
|
35 |
+
bidirectional: True
|
36 |
+
hidden_size: !ref <encoder_dim>
|
37 |
+
num_layers: 2
|
38 |
+
linear: !new:speechbrain.nnet.linear.Linear
|
39 |
+
input_size: !ref <encoder_dim> * 2
|
40 |
+
n_neurons: !ref <encoder_dim>
|
41 |
+
|
42 |
+
output_emb: !new:speechbrain.nnet.embedding.Embedding
|
43 |
+
num_embeddings: !ref <output_neurons>
|
44 |
+
embedding_dim: !ref <emb_size>
|
45 |
+
|
46 |
+
dec: !new:speechbrain.nnet.RNN.AttentionalRNNDecoder
|
47 |
+
enc_dim: !ref <encoder_dim>
|
48 |
+
input_size: !ref <emb_size>
|
49 |
+
rnn_type: gru
|
50 |
+
attn_type: keyvalue
|
51 |
+
hidden_size: !ref <dec_neurons>
|
52 |
+
attn_dim: 512
|
53 |
+
num_layers: 3
|
54 |
+
scaling: 1.0
|
55 |
+
dropout: 0.0
|
56 |
+
|
57 |
+
seq_lin: !new:speechbrain.nnet.linear.Linear
|
58 |
+
input_size: !ref <dec_neurons>
|
59 |
+
n_neurons: !ref <output_neurons>
|
60 |
+
|
61 |
+
model: !new:torch.nn.ModuleList
|
62 |
+
- [!ref <slu_enc>, !ref <output_emb>,
|
63 |
+
!ref <dec>, !ref <seq_lin>]
|
64 |
+
|
65 |
+
tokenizer: !new:sentencepiece.SentencePieceProcessor
|
66 |
+
|
67 |
+
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
68 |
+
loadables:
|
69 |
+
model: !ref <model>
|
70 |
+
tokenizer: !ref <tokenizer>
|
71 |
+
|
72 |
+
beam_searcher: !new:speechbrain.decoders.S2SRNNBeamSearcher
|
73 |
+
embedding: !ref <output_emb>
|
74 |
+
decoder: !ref <dec>
|
75 |
+
linear: !ref <seq_lin>
|
76 |
+
bos_index: !ref <bos_index>
|
77 |
+
eos_index: !ref <eos_index>
|
78 |
+
min_decode_ratio: !ref <min_decode_ratio>
|
79 |
+
max_decode_ratio: !ref <max_decode_ratio>
|
80 |
+
beam_size: !ref <slu_beam_size>
|
81 |
+
eos_threshold: !ref <eos_threshold>
|
82 |
+
temperature: !ref <temperature>
|
83 |
+
using_max_attn_shift: False
|
84 |
+
max_attn_shift: 30
|
85 |
+
coverage_penalty: 0.
|
86 |
+
|
87 |
+
modules:
|
88 |
+
slu_enc: !ref <slu_enc>
|
89 |
+
beam_searcher: !ref <beam_searcher>
|
90 |
+
|
model.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15afda407aa0a967b16fde3bb221ecd51a358cde456ed3c1286f248d217c5947
|
3 |
+
size 37183449
|
tokenizer.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d58f99aa4cc80e1cb0eb8de46a33edaa0bcade7514cd3b662ebebc685c8ebf82
|
3 |
+
size 238249
|