poonehmousavi
commited on
Commit
·
bb52bb9
1
Parent(s):
eac28d8
Upload 4 files
Browse files- README.md +40 -22
- config.json +68 -75
- hyperparams.yaml +51 -79
- preprocessor_config.json +7 -8
README.md
CHANGED
@@ -1,44 +1,61 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
-
|
|
|
4 |
pipeline_tag: automatic-speech-recognition
|
5 |
tags:
|
6 |
- CTC
|
7 |
-
- Attention
|
8 |
- pytorch
|
9 |
- speechbrain
|
10 |
- Transformer
|
11 |
-
license:
|
12 |
datasets:
|
13 |
-
- commonvoice
|
14 |
metrics:
|
15 |
- wer
|
16 |
- cer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
---
|
18 |
|
19 |
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
|
20 |
<br/><br/>
|
21 |
|
22 |
-
# wav2vec 2.0 with CTC
|
23 |
|
24 |
This repository provides all the necessary tools to perform automatic speech
|
25 |
-
recognition from an end-to-end system pretrained on CommonVoice (
|
26 |
SpeechBrain. For a better experience, we encourage you to learn more about
|
27 |
-
[SpeechBrain](https://speechbrain.github.io).
|
28 |
|
29 |
The performance of the model is the following:
|
30 |
|
31 |
| Release | Test CER | Test WER | GPUs |
|
32 |
-
|
33 |
-
|
|
34 |
|
35 |
## Pipeline description
|
36 |
|
37 |
This ASR system is composed of 2 different but linked blocks:
|
38 |
-
- Tokenizer (unigram) that transforms words into
|
39 |
-
the train transcriptions (train.tsv) of CommonVoice (
|
40 |
-
- Acoustic model (wav2vec2.0 + CTC
|
41 |
-
The obtained final acoustic representation is given to the CTC
|
42 |
|
43 |
The system is trained with recordings sampled at 16kHz (single channel).
|
44 |
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed.
|
@@ -54,13 +71,13 @@ pip install speechbrain transformers
|
|
54 |
Please notice that we encourage you to read our tutorials and learn more about
|
55 |
[SpeechBrain](https://speechbrain.github.io).
|
56 |
|
57 |
-
### Transcribing your own audio files (in
|
58 |
|
59 |
```python
|
60 |
-
from speechbrain.pretrained import
|
61 |
|
62 |
-
asr_model =
|
63 |
-
asr_model.transcribe_file("speechbrain/asr-wav2vec2-commonvoice-14-
|
64 |
|
65 |
```
|
66 |
### Inference on GPU
|
@@ -85,15 +102,16 @@ pip install -e .
|
|
85 |
|
86 |
3. Run Training:
|
87 |
```bash
|
88 |
-
cd recipes/CommonVoice/ASR/
|
89 |
-
python train_with_wav2vec.py hparams/
|
90 |
```
|
91 |
|
92 |
-
You can find our training results (models, logs, etc) [here](https://
|
93 |
|
94 |
### Limitations
|
95 |
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
|
96 |
|
|
|
97 |
# **About SpeechBrain**
|
98 |
- Website: https://speechbrain.github.io/
|
99 |
- Code: https://github.com/speechbrain/speechbrain/
|
@@ -113,4 +131,4 @@ Please, cite SpeechBrain if you use it for your research or business.
|
|
113 |
primaryClass={eess.AS},
|
114 |
note={arXiv:2106.04624}
|
115 |
}
|
116 |
-
```
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
thumbnail: null
|
5 |
pipeline_tag: automatic-speech-recognition
|
6 |
tags:
|
7 |
- CTC
|
|
|
8 |
- pytorch
|
9 |
- speechbrain
|
10 |
- Transformer
|
11 |
+
license: apache-2.0
|
12 |
datasets:
|
13 |
+
- commonvoice.14.0
|
14 |
metrics:
|
15 |
- wer
|
16 |
- cer
|
17 |
+
model-index:
|
18 |
+
- name: asr-wav2vec2-commonvoice-14-en
|
19 |
+
results:
|
20 |
+
- task:
|
21 |
+
name: Automatic Speech Recognition
|
22 |
+
type: automatic-speech-recognition
|
23 |
+
dataset:
|
24 |
+
name: CommonVoice Corpus 14.0 (English)
|
25 |
+
type: mozilla-foundation/common_voice_14.0
|
26 |
+
config: en
|
27 |
+
split: test
|
28 |
+
args:
|
29 |
+
language: en
|
30 |
+
metrics:
|
31 |
+
- name: Test WER
|
32 |
+
type: wer
|
33 |
+
value: '16.68'
|
34 |
---
|
35 |
|
36 |
<iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
|
37 |
<br/><br/>
|
38 |
|
39 |
+
# wav2vec 2.0 with CTC trained on CommonVoice English (No LM)
|
40 |
|
41 |
This repository provides all the necessary tools to perform automatic speech
|
42 |
+
recognition from an end-to-end system pretrained on CommonVoice (English Language) within
|
43 |
SpeechBrain. For a better experience, we encourage you to learn more about
|
44 |
+
[SpeechBrain](https://speechbrain.github.io).
|
45 |
|
46 |
The performance of the model is the following:
|
47 |
|
48 |
| Release | Test CER | Test WER | GPUs |
|
49 |
+
|:-------------:|:--------------:|:--------------:| :--------:|
|
50 |
+
| 15-08-23 | 7.92 | 16.86 | 1xV100 32GB |
|
51 |
|
52 |
## Pipeline description
|
53 |
|
54 |
This ASR system is composed of 2 different but linked blocks:
|
55 |
+
- Tokenizer (unigram) that transforms words into unigrams and trained with
|
56 |
+
the train transcriptions (train.tsv) of CommonVoice (en).
|
57 |
+
- Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model ([wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60)) is combined with two DNN layers and finetuned on CommonVoice DE.
|
58 |
+
The obtained final acoustic representation is given to the CTC decoder.
|
59 |
|
60 |
The system is trained with recordings sampled at 16kHz (single channel).
|
61 |
The code will automatically normalize your audio (i.e., resampling + mono channel selection) when calling *transcribe_file* if needed.
|
|
|
71 |
Please notice that we encourage you to read our tutorials and learn more about
|
72 |
[SpeechBrain](https://speechbrain.github.io).
|
73 |
|
74 |
+
### Transcribing your own audio files (in English)
|
75 |
|
76 |
```python
|
77 |
+
from speechbrain.pretrained import EncoderASR
|
78 |
|
79 |
+
asr_model = EncoderASR.from_hparams(source="speechbrain/asr-wav2vec2-commonvoice-14-en", savedir="pretrained_models/asr-wav2vec2-commonvoice-14-en")
|
80 |
+
asr_model.transcribe_file("speechbrain/asr-wav2vec2-commonvoice-14-en/example-en.wav")
|
81 |
|
82 |
```
|
83 |
### Inference on GPU
|
|
|
102 |
|
103 |
3. Run Training:
|
104 |
```bash
|
105 |
+
cd recipes/CommonVoice/ASR/CTC/
|
106 |
+
python train_with_wav2vec.py hparams/train_en_with_wav2vec.yaml --data_folder=your_data_folder
|
107 |
```
|
108 |
|
109 |
+
You can find our training results (models, logs, etc) [here](https://www.dropbox.com/sh/ch10cnbhf1faz3w/AACdHFG65LC6582H0Tet_glTa?dl=0).
|
110 |
|
111 |
### Limitations
|
112 |
The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
|
113 |
|
114 |
+
|
115 |
# **About SpeechBrain**
|
116 |
- Website: https://speechbrain.github.io/
|
117 |
- Code: https://github.com/speechbrain/speechbrain/
|
|
|
131 |
primaryClass={eess.AS},
|
132 |
note={arXiv:2106.04624}
|
133 |
}
|
134 |
+
```
|
config.json
CHANGED
@@ -1,76 +1,69 @@
|
|
1 |
{
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
"num_conv_pos_embeddings": 128,
|
71 |
-
"num_feat_extract_layers": 7,
|
72 |
-
"num_hidden_layers": 24,
|
73 |
-
"pad_token_id": 0,
|
74 |
-
"transformers_version": "4.6.0.dev0",
|
75 |
-
"vocab_size": 32
|
76 |
-
}
|
|
|
1 |
{
|
2 |
+
"speechbrain_interface": "EncoderASR",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"apply_spec_augment": true,
|
5 |
+
"architectures": [
|
6 |
+
"Wav2Vec2Model"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"bos_token_id": 1,
|
10 |
+
"conv_bias": true,
|
11 |
+
"conv_dim": [
|
12 |
+
512,
|
13 |
+
512,
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512,
|
17 |
+
512,
|
18 |
+
512
|
19 |
+
],
|
20 |
+
"conv_kernel": [
|
21 |
+
10,
|
22 |
+
3,
|
23 |
+
3,
|
24 |
+
3,
|
25 |
+
3,
|
26 |
+
2,
|
27 |
+
2
|
28 |
+
],
|
29 |
+
"conv_stride": [
|
30 |
+
5,
|
31 |
+
2,
|
32 |
+
2,
|
33 |
+
2,
|
34 |
+
2,
|
35 |
+
2,
|
36 |
+
2
|
37 |
+
],
|
38 |
+
"ctc_loss_reduction": "sum",
|
39 |
+
"ctc_zero_infinity": false,
|
40 |
+
"do_stable_layer_norm": true,
|
41 |
+
"eos_token_id": 2,
|
42 |
+
"feat_extract_activation": "gelu",
|
43 |
+
"feat_extract_dropout": 0.0,
|
44 |
+
"feat_extract_norm": "layer",
|
45 |
+
"feat_proj_dropout": 0.1,
|
46 |
+
"final_dropout": 0.1,
|
47 |
+
"gradient_checkpointing": false,
|
48 |
+
"hidden_act": "gelu",
|
49 |
+
"hidden_dropout": 0.1,
|
50 |
+
"hidden_dropout_prob": 0.1,
|
51 |
+
"hidden_size": 1024,
|
52 |
+
"initializer_range": 0.02,
|
53 |
+
"intermediate_size": 4096,
|
54 |
+
"layer_norm_eps": 1e-05,
|
55 |
+
"layerdrop": 0.1,
|
56 |
+
"mask_feature_length": 10,
|
57 |
+
"mask_feature_prob": 0.0,
|
58 |
+
"mask_time_length": 10,
|
59 |
+
"mask_time_prob": 0.05,
|
60 |
+
"model_type": "wav2vec2",
|
61 |
+
"num_attention_heads": 16,
|
62 |
+
"num_conv_pos_embedding_groups": 16,
|
63 |
+
"num_conv_pos_embeddings": 128,
|
64 |
+
"num_feat_extract_layers": 7,
|
65 |
+
"num_hidden_layers": 24,
|
66 |
+
"pad_token_id": 0,
|
67 |
+
"transformers_version": "4.21.1",
|
68 |
+
"vocab_size": 32
|
69 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hyperparams.yaml
CHANGED
@@ -1,22 +1,24 @@
|
|
1 |
# ################################
|
2 |
-
# Model: wav2vec2 + DNN + CTC
|
3 |
# Augmentation: SpecAugment
|
4 |
-
# Authors:
|
|
|
|
|
5 |
# ################################
|
6 |
|
7 |
-
sample_rate: 16000
|
8 |
-
wav2vec2_hub: facebook/wav2vec2-large-it-voxpopuli
|
9 |
-
|
10 |
# BPE parameters
|
11 |
token_type: unigram # ["unigram", "bpe", "char"]
|
12 |
character_coverage: 1.0
|
13 |
|
14 |
# Model parameters
|
15 |
-
activation: !name:torch.nn.LeakyReLU
|
16 |
-
dnn_layers: 2
|
17 |
dnn_neurons: 1024
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# Outputs
|
22 |
output_neurons: 1000 # BPE size, index(blank/eos/bos) = 0
|
@@ -26,93 +28,63 @@ output_neurons: 1000 # BPE size, index(blank/eos/bos) = 0
|
|
26 |
blank_index: 0
|
27 |
bos_index: 1
|
28 |
eos_index: 2
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
wav2vec2: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
emb: !new:speechbrain.nnet.embedding.Embedding
|
51 |
-
num_embeddings: !ref <output_neurons>
|
52 |
-
embedding_dim: !ref <emb_size>
|
53 |
-
|
54 |
-
dec: !new:speechbrain.nnet.RNN.AttentionalRNNDecoder
|
55 |
-
enc_dim: !ref <dnn_neurons>
|
56 |
-
input_size: !ref <emb_size>
|
57 |
-
rnn_type: gru
|
58 |
-
attn_type: location
|
59 |
-
hidden_size: 1024
|
60 |
-
attn_dim: 1024
|
61 |
-
num_layers: 1
|
62 |
-
scaling: 1.0
|
63 |
-
channels: 10
|
64 |
-
kernel_size: 100
|
65 |
-
re_init: True
|
66 |
-
dropout: 0.15
|
67 |
|
68 |
ctc_lin: !new:speechbrain.nnet.linear.Linear
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
seq_lin: !new:speechbrain.nnet.linear.Linear
|
73 |
-
input_size: !ref <dec_neurons>
|
74 |
-
n_neurons: !ref <output_neurons>
|
75 |
|
76 |
log_softmax: !new:speechbrain.nnet.activations.Softmax
|
77 |
-
|
78 |
|
79 |
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
|
80 |
-
|
81 |
-
|
82 |
-
seq_cost: !name:speechbrain.nnet.losses.nll_loss
|
83 |
-
label_smoothing: 0.1
|
84 |
|
85 |
asr_model: !new:torch.nn.ModuleList
|
86 |
-
- [!ref <enc>, !ref <
|
87 |
|
88 |
tokenizer: !new:sentencepiece.SentencePieceProcessor
|
89 |
|
90 |
encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential
|
91 |
wav2vec2: !ref <wav2vec2>
|
92 |
enc: !ref <enc>
|
93 |
-
|
94 |
-
decoder: !new:speechbrain.decoders.S2SRNNBeamSearcher
|
95 |
-
embedding: !ref <emb>
|
96 |
-
decoder: !ref <dec>
|
97 |
-
linear: !ref <seq_lin>
|
98 |
-
ctc_linear: !ref <ctc_lin>
|
99 |
-
bos_index: !ref <bos_index>
|
100 |
-
eos_index: !ref <eos_index>
|
101 |
-
blank_index: !ref <blank_index>
|
102 |
-
min_decode_ratio: !ref <min_decode_ratio>
|
103 |
-
max_decode_ratio: !ref <max_decode_ratio>
|
104 |
-
beam_size: !ref <beam_size>
|
105 |
-
eos_threshold: !ref <eos_threshold>
|
106 |
-
using_max_attn_shift: !ref <using_max_attn_shift>
|
107 |
-
max_attn_shift: !ref <max_attn_shift>
|
108 |
-
temperature: !ref <temperature>
|
109 |
|
110 |
modules:
|
111 |
-
|
112 |
-
|
|
|
|
|
113 |
|
114 |
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
1 |
# ################################
|
2 |
+
# Model: wav2vec2 + DNN + CTC
|
3 |
# Augmentation: SpecAugment
|
4 |
+
# Authors:
|
5 |
+
# Sung-Lin Yeh 2021
|
6 |
+
# Pooneh Mousavi 2023
|
7 |
# ################################
|
8 |
|
|
|
|
|
|
|
9 |
# BPE parameters
|
10 |
token_type: unigram # ["unigram", "bpe", "char"]
|
11 |
character_coverage: 1.0
|
12 |
|
13 |
# Model parameters
|
14 |
+
# activation: !name:torch.nn.LeakyReLU
|
|
|
15 |
dnn_neurons: 1024
|
16 |
+
wav2vec_output_dim: 1024
|
17 |
+
dropout: 0.15
|
18 |
+
|
19 |
+
sample_rate: 16000
|
20 |
+
|
21 |
+
wav2vec2_hub: facebook/wav2vec2-large-lv60
|
22 |
|
23 |
# Outputs
|
24 |
output_neurons: 1000 # BPE size, index(blank/eos/bos) = 0
|
|
|
28 |
blank_index: 0
|
29 |
bos_index: 1
|
30 |
eos_index: 2
|
31 |
+
|
32 |
+
enc: !new:speechbrain.nnet.containers.Sequential
|
33 |
+
input_shape: [null, null, !ref <wav2vec_output_dim>]
|
34 |
+
linear1: !name:speechbrain.nnet.linear.Linear
|
35 |
+
n_neurons: !ref <dnn_neurons>
|
36 |
+
bias: True
|
37 |
+
bn1: !name:speechbrain.nnet.normalization.BatchNorm1d
|
38 |
+
activation: !new:torch.nn.LeakyReLU
|
39 |
+
drop: !new:torch.nn.Dropout
|
40 |
+
p: !ref <dropout>
|
41 |
+
linear2: !name:speechbrain.nnet.linear.Linear
|
42 |
+
n_neurons: !ref <dnn_neurons>
|
43 |
+
bias: True
|
44 |
+
bn2: !name:speechbrain.nnet.normalization.BatchNorm1d
|
45 |
+
activation2: !new:torch.nn.LeakyReLU
|
46 |
+
drop2: !new:torch.nn.Dropout
|
47 |
+
p: !ref <dropout>
|
48 |
+
linear3: !name:speechbrain.nnet.linear.Linear
|
49 |
+
n_neurons: !ref <dnn_neurons>
|
50 |
+
bias: True
|
51 |
+
bn3: !name:speechbrain.nnet.normalization.BatchNorm1d
|
52 |
+
activation3: !new:torch.nn.LeakyReLU
|
53 |
|
54 |
wav2vec2: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2
|
55 |
+
source: !ref <wav2vec2_hub>
|
56 |
+
output_norm: True
|
57 |
+
freeze: True
|
58 |
+
save_path: wav2vec2_checkpoint
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
ctc_lin: !new:speechbrain.nnet.linear.Linear
|
61 |
+
input_size: !ref <dnn_neurons>
|
62 |
+
n_neurons: !ref <output_neurons>
|
|
|
|
|
|
|
|
|
63 |
|
64 |
log_softmax: !new:speechbrain.nnet.activations.Softmax
|
65 |
+
apply_log: True
|
66 |
|
67 |
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
|
68 |
+
blank_index: !ref <blank_index>
|
|
|
|
|
|
|
69 |
|
70 |
asr_model: !new:torch.nn.ModuleList
|
71 |
+
- [!ref <enc>, !ref <ctc_lin>]
|
72 |
|
73 |
tokenizer: !new:sentencepiece.SentencePieceProcessor
|
74 |
|
75 |
encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential
|
76 |
wav2vec2: !ref <wav2vec2>
|
77 |
enc: !ref <enc>
|
78 |
+
ctc_lin: !ref <ctc_lin>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
modules:
|
81 |
+
encoder: !ref <encoder>
|
82 |
+
|
83 |
+
decoding_function: !name:speechbrain.decoders.ctc_greedy_decode
|
84 |
+
blank_id: !ref <blank_index>
|
85 |
|
86 |
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
87 |
+
loadables:
|
88 |
+
wav2vec2: !ref <wav2vec2>
|
89 |
+
asr: !ref <asr_model>
|
90 |
+
tokenizer: !ref <tokenizer>
|
preprocessor_config.json
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
{
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
}
|
|
|
1 |
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_size": 1,
|
4 |
+
"padding_side": "right",
|
5 |
+
"padding_value": 0.0,
|
6 |
+
"return_attention_mask": true,
|
7 |
+
"sampling_rate": 16000
|
8 |
+
}
|
|