Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
from os import listdir
|
4 |
+
from os.path import isfile, join, exists, isdir, abspath
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import tensorflow as tf
|
9 |
+
from tensorflow import keras
|
10 |
+
import tensorflow_hub as hub
|
11 |
+
|
12 |
+
|
13 |
+
IMAGE_DIM = 299 # required/default image dimensionality
|
14 |
+
|
15 |
+
def load_images(image_paths, image_size, verbose=True):
|
16 |
+
loaded_images = []
|
17 |
+
loaded_image_paths = []
|
18 |
+
|
19 |
+
if isdir(image_paths):
|
20 |
+
parent = abspath(image_paths)
|
21 |
+
image_paths = [join(parent, f) for f in listdir(image_paths) if isfile(join(parent, f))]
|
22 |
+
elif isfile(image_paths):
|
23 |
+
image_paths = [image_paths]
|
24 |
+
|
25 |
+
for img_path in image_paths:
|
26 |
+
try:
|
27 |
+
if verbose:
|
28 |
+
print(img_path, "size:", image_size)
|
29 |
+
image = keras.preprocessing.image.load_img(img_path, target_size=image_size)
|
30 |
+
image = keras.preprocessing.image.img_to_array(image)
|
31 |
+
image /= 255
|
32 |
+
loaded_images.append(image)
|
33 |
+
loaded_image_paths.append(img_path)
|
34 |
+
except Exception as ex:
|
35 |
+
print("Image Load Failure: ", img_path, ex)
|
36 |
+
|
37 |
+
return np.asarray(loaded_images), loaded_image_paths
|
38 |
+
|
39 |
+
def load_model(model_path):
|
40 |
+
if model_path is None or not exists(model_path):
|
41 |
+
raise ValueError("saved_model_path must be the valid directory of a saved model to load.")
|
42 |
+
|
43 |
+
model = tf.keras.models.load_model(model_path, custom_objects={'KerasLayer': hub.KerasLayer},compile=False)
|
44 |
+
return model
|
45 |
+
|
46 |
+
|
47 |
+
def classify_nd(model, nd_images, predict_args={}):
|
48 |
+
model_preds = model.predict(nd_images, **predict_args)
|
49 |
+
categories = ['drawings', 'hentai', 'neutral', 'porn', 'sexy']
|
50 |
+
|
51 |
+
probs = []
|
52 |
+
for i, single_preds in enumerate(model_preds):
|
53 |
+
single_probs = {}
|
54 |
+
for j, pred in enumerate(single_preds):
|
55 |
+
single_probs[categories[j]] = float(pred)
|
56 |
+
probs.append(single_probs)
|
57 |
+
return probs
|
58 |
+
|
59 |
+
|
60 |
+
def nsfw(image):
|
61 |
+
model = load_model("nsfw.299x299.h5")
|
62 |
+
image_preds = classify_nd(model, image)
|
63 |
+
return json.dumps(image_preds, indent=2)
|
64 |
+
|
65 |
+
|
66 |
+
demo = gr.Interface(fn=nsfw,
|
67 |
+
inputs= gr.Image(type="pil"),
|
68 |
+
outputs=["text"],
|
69 |
+
title="")
|
70 |
+
demo.launch(share=False)
|