chatPDF / app.py
zouguojun's picture
Duplicate from souljoy/chatPDF
bbfae1f
raw
history blame
7 kB
import requests
import json
import gradio as gr
# from concurrent.futures import ThreadPoolExecutor
import pdfplumber
import pandas as pd
import time
from cnocr import CnOcr
from sentence_transformers import SentenceTransformer, models, util
word_embedding_model = models.Transformer('uer/sbert-base-chinese-nli', do_lower_case=True)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), pooling_mode='cls')
embedder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
ocr = CnOcr()
# chat_url = 'https://souljoy-my-api.hf.space/sale'
chat_url = 'https://souljoy-my-api.hf.space/chatpdf'
headers = {
'Content-Type': 'application/json',
}
# thread_pool_executor = ThreadPoolExecutor(max_workers=4)
history_max_len = 500
all_max_len = 3000
def get_emb(text):
emb_url = 'https://souljoy-my-api.hf.space/embeddings'
data = {"content": text}
try:
result = requests.post(url=emb_url,
data=json.dumps(data),
headers=headers
)
return result.json()['data'][0]['embedding']
except Exception as e:
print('data', data, 'result json', result.json())
def doc_emb(doc: str):
texts = doc.split('\n')
# futures = []
emb_list = embedder.encode(texts)
# for text in texts:
# futures.append(thread_pool_executor.submit(get_emb, text))
# for f in futures:
# emb_list.append(f.result())
print('\n'.join(texts))
return texts, emb_list, gr.Textbox.update(visible=True), gr.Button.update(visible=True), gr.Markdown.update(
value="""操作说明 step 3:PDF解析提交成功! 🙋 可以开始对话啦~"""), gr.Chatbot.update(visible=True)
def get_response(msg, bot, doc_text_list, doc_embeddings):
# future = thread_pool_executor.submit(get_emb, msg)
now_len = len(msg)
req_json = {'question': msg}
his_bg = -1
for i in range(len(bot) - 1, -1, -1):
if now_len + len(bot[i][0]) + len(bot[i][1]) > history_max_len:
break
now_len += len(bot[i][0]) + len(bot[i][1])
his_bg = i
req_json['history'] = [] if his_bg == -1 else bot[his_bg:]
# query_embedding = future.result()
query_embedding = embedder.encode([msg])
cos_scores = util.cos_sim(query_embedding, doc_embeddings)[0]
score_index = [[score, index] for score, index in zip(cos_scores, [i for i in range(len(cos_scores))])]
score_index.sort(key=lambda x: x[0], reverse=True)
print('score_index:\n', score_index)
index_set, sub_doc_list = set(), []
for s_i in score_index:
doc = doc_text_list[s_i[1]]
if now_len + len(doc) > all_max_len:
break
index_set.add(s_i[1])
now_len += len(doc)
# 可能段落截断错误,所以把上下段也加入进来
if s_i[1] > 0 and s_i[1] -1 not in index_set:
doc = doc_text_list[s_i[1]-1]
if now_len + len(doc) > all_max_len:
break
index_set.add(s_i[1]-1)
now_len += len(doc)
if s_i[1] + 1 < len(doc_text_list) and s_i[1] + 1 not in index_set:
doc = doc_text_list[s_i[1]+1]
if now_len + len(doc) > all_max_len:
break
index_set.add(s_i[1]+1)
now_len += len(doc)
index_list = list(index_set)
index_list.sort()
for i in index_list:
sub_doc_list.append(doc_text_list[i])
req_json['doc'] = '' if len(sub_doc_list) == 0 else '\n'.join(sub_doc_list)
data = {"content": json.dumps(req_json)}
print('data:\n', req_json)
result = requests.post(url=chat_url,
data=json.dumps(data),
headers=headers
)
res = result.json()['content']
bot.append([msg, res])
return bot[max(0, len(bot) - 3):]
def up_file(files):
doc_text_list = []
for idx, file in enumerate(files):
print(file.name)
with pdfplumber.open(file.name) as pdf:
for i in range(len(pdf.pages)):
# 读取PDF文档第i+1页
page = pdf.pages[i]
res_list = page.extract_text().split('\n')[:-1]
for j in range(len(page.images)):
# 获取图片的二进制流
img = page.images[j]
file_name = '{}-{}-{}.png'.format(str(time.time()), str(i), str(j))
with open(file_name, mode='wb') as f:
f.write(img['stream'].get_data())
try:
res = ocr.ocr(file_name)
except Exception as e:
res = []
if len(res) > 0:
res_list.append(' '.join([re['text'] for re in res]))
tables = page.extract_tables()
for table in tables:
# 第一列当成表头:
df = pd.DataFrame(table[1:], columns=table[0])
try:
records = json.loads(df.to_json(orient="records", force_ascii=False))
for rec in records:
res_list.append(json.dumps(rec, ensure_ascii=False))
except Exception as e:
res_list.append(str(df))
doc_text_list += res_list
doc_text_list = [str(text).strip() for text in doc_text_list if len(str(text).strip()) > 0]
print(doc_text_list)
return gr.Textbox.update(value='\n'.join(doc_text_list), visible=True), gr.Button.update(
visible=True), gr.Markdown.update(
value="操作说明 step 2:确认PDF解析结果(可修正),点击“提交解析结果”,随后进行对话")
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
file = gr.File(file_types=['.pdf'], label='点击上传PDF,进行解析(支持多文档、表格、OCR)', file_count='multiple')
doc_bu = gr.Button(value='提交解析结果', visible=False)
txt = gr.Textbox(label='PDF解析结果', visible=False)
doc_text_state = gr.State([])
doc_emb_state = gr.State([])
with gr.Column():
md = gr.Markdown("""操作说明 step 1:点击左侧区域,上传PDF,进行解析""")
chat_bot = gr.Chatbot(visible=False)
msg_txt = gr.Textbox(label='消息框', placeholder='输入消息,点击发送', visible=False)
chat_bu = gr.Button(value='发送', visible=False)
file.change(up_file, [file], [txt, doc_bu, md])
doc_bu.click(doc_emb, [txt], [doc_text_state, doc_emb_state, msg_txt, chat_bu, md, chat_bot])
chat_bu.click(get_response, [msg_txt, chat_bot, doc_text_state, doc_emb_state], [chat_bot])
if __name__ == "__main__":
demo.queue().launch()
# demo.queue().launch(share=False, server_name='172.22.2.54', server_port=9191)