sovits-teio / hubert /hubert_model_onnx.py
saya
Duplicate from sayashi/sovits-models
c9492f8
raw
history blame
7.16 kB
import copy
import random
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as t_func
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
class Hubert(nn.Module):
def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
super().__init__()
self._mask = mask
self.feature_extractor = FeatureExtractor()
self.feature_projection = FeatureProjection()
self.positional_embedding = PositionalConvEmbedding()
self.norm = nn.LayerNorm(768)
self.dropout = nn.Dropout(0.1)
self.encoder = TransformerEncoder(
nn.TransformerEncoderLayer(
768, 12, 3072, activation="gelu", batch_first=True
),
12,
)
self.proj = nn.Linear(768, 256)
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
self.label_embedding = nn.Embedding(num_label_embeddings, 256)
def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
mask = None
if self.training and self._mask:
mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
x[mask] = self.masked_spec_embed.to(x.dtype)
return x, mask
def encode(
self, x: torch.Tensor, layer: Optional[int] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
x = self.feature_extractor(x)
x = self.feature_projection(x.transpose(1, 2))
x, mask = self.mask(x)
x = x + self.positional_embedding(x)
x = self.dropout(self.norm(x))
x = self.encoder(x, output_layer=layer)
return x, mask
def logits(self, x: torch.Tensor) -> torch.Tensor:
logits = torch.cosine_similarity(
x.unsqueeze(2),
self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
dim=-1,
)
return logits / 0.1
class HubertSoft(Hubert):
def __init__(self):
super().__init__()
def units(self, wav: torch.Tensor) -> torch.Tensor:
wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
x, _ = self.encode(wav)
return self.proj(x)
def forward(self, x):
return self.units(x)
class FeatureExtractor(nn.Module):
def __init__(self):
super().__init__()
self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
self.norm0 = nn.GroupNorm(512, 512)
self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = t_func.gelu(self.norm0(self.conv0(x)))
x = t_func.gelu(self.conv1(x))
x = t_func.gelu(self.conv2(x))
x = t_func.gelu(self.conv3(x))
x = t_func.gelu(self.conv4(x))
x = t_func.gelu(self.conv5(x))
x = t_func.gelu(self.conv6(x))
return x
class FeatureProjection(nn.Module):
def __init__(self):
super().__init__()
self.norm = nn.LayerNorm(512)
self.projection = nn.Linear(512, 768)
self.dropout = nn.Dropout(0.1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.norm(x)
x = self.projection(x)
x = self.dropout(x)
return x
class PositionalConvEmbedding(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Conv1d(
768,
768,
kernel_size=128,
padding=128 // 2,
groups=16,
)
self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.conv(x.transpose(1, 2))
x = t_func.gelu(x[:, :, :-1])
return x.transpose(1, 2)
class TransformerEncoder(nn.Module):
def __init__(
self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
) -> None:
super(TransformerEncoder, self).__init__()
self.layers = nn.ModuleList(
[copy.deepcopy(encoder_layer) for _ in range(num_layers)]
)
self.num_layers = num_layers
def forward(
self,
src: torch.Tensor,
mask: torch.Tensor = None,
src_key_padding_mask: torch.Tensor = None,
output_layer: Optional[int] = None,
) -> torch.Tensor:
output = src
for layer in self.layers[:output_layer]:
output = layer(
output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
)
return output
def _compute_mask(
shape: Tuple[int, int],
mask_prob: float,
mask_length: int,
device: torch.device,
min_masks: int = 0,
) -> torch.Tensor:
batch_size, sequence_length = shape
if mask_length < 1:
raise ValueError("`mask_length` has to be bigger than 0.")
if mask_length > sequence_length:
raise ValueError(
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
)
# compute number of masked spans in batch
num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
num_masked_spans = max(num_masked_spans, min_masks)
# make sure num masked indices <= sequence_length
if num_masked_spans * mask_length > sequence_length:
num_masked_spans = sequence_length // mask_length
# SpecAugment mask to fill
mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
# uniform distribution to sample from, make sure that offset samples are < sequence_length
uniform_dist = torch.ones(
(batch_size, sequence_length - (mask_length - 1)), device=device
)
# get random indices to mask
mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
# expand masked indices to masked spans
mask_indices = (
mask_indices.unsqueeze(dim=-1)
.expand((batch_size, num_masked_spans, mask_length))
.reshape(batch_size, num_masked_spans * mask_length)
)
offsets = (
torch.arange(mask_length, device=device)[None, None, :]
.expand((batch_size, num_masked_spans, mask_length))
.reshape(batch_size, num_masked_spans * mask_length)
)
mask_idxs = mask_indices + offsets
# scatter indices to mask
mask = mask.scatter(1, mask_idxs, True)
return mask
def hubert_soft(
path: str,
) -> HubertSoft:
r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
Args:
path (str): path of a pretrained model
"""
hubert = HubertSoft()
checkpoint = torch.load(path)
consume_prefix_in_state_dict_if_present(checkpoint, "module.")
hubert.load_state_dict(checkpoint)
hubert.eval()
return hubert