Spaces:
Running
Running
File size: 13,416 Bytes
fb66b67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import os
cnhubert_base_path = "pretrained_models/chinese-hubert-base"
bert_path = "pretrained_models/chinese-roberta-wwm-ext-large"
import gradio as gr
from transformers import AutoModelForMaskedLM, AutoTokenizer
import sys,torch,numpy as np
from pathlib import Path
import os,pdb,utils,librosa,math,traceback,requests,argparse,torch,multiprocessing,pandas as pd,torch.multiprocessing as mp,soundfile
# torch.backends.cuda.sdp_kernel("flash")
# torch.backends.cuda.enable_flash_sdp(True)
# torch.backends.cuda.enable_mem_efficient_sdp(True) # Not avaliable if torch version is lower than 2.0
# torch.backends.cuda.enable_math_sdp(True)
from random import shuffle
from AR.utils import get_newest_ckpt
from glob import glob
from tqdm import tqdm
from feature_extractor import cnhubert
cnhubert.cnhubert_base_path=cnhubert_base_path
from io import BytesIO
from module.models import SynthesizerTrn
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from AR.utils.io import load_yaml_config
from text import cleaned_text_to_sequence
from text.cleaner import text_to_sequence, clean_text
from time import time as ttime
from module.mel_processing import spectrogram_torch
from my_utils import load_audio
import logging
logging.getLogger('httpx').setLevel(logging.WARNING)
logging.getLogger('httpcore').setLevel(logging.WARNING)
logging.getLogger('multipart').setLevel(logging.WARNING)
device = "cpu"
is_half = False
tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model=AutoModelForMaskedLM.from_pretrained(bert_path)
if(is_half==True):bert_model=bert_model.half().to(device)
else:bert_model=bert_model.to(device)
# bert_model=bert_model.to(device)
def get_bert_feature(text, word2ph):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device)#####输入是long不用管精度问题,精度随bert_model
res = bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
# if(is_half==True):phone_level_feature=phone_level_feature.half()
return phone_level_feature.T
def load_model(sovits_path, gpt_path):
n_semantic = 1024
dict_s2 = torch.load(sovits_path, map_location="cpu")
hps = dict_s2["config"]
class DictToAttrRecursive:
def __init__(self, input_dict):
for key, value in input_dict.items():
if isinstance(value, dict):
# 如果值是字典,递归调用构造函数
setattr(self, key, DictToAttrRecursive(value))
else:
setattr(self, key, value)
hps = DictToAttrRecursive(hps)
hps.model.semantic_frame_rate = "25hz"
dict_s1 = torch.load(gpt_path, map_location="cpu")
config = dict_s1["config"]
ssl_model = cnhubert.get_model()
if (is_half == True):
ssl_model = ssl_model.half().to(device)
else:
ssl_model = ssl_model.to(device)
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model)
if (is_half == True):
vq_model = vq_model.half().to(device)
else:
vq_model = vq_model.to(device)
vq_model.eval()
vq_model.load_state_dict(dict_s2["weight"], strict=False)
hz = 50
max_sec = config['data']['max_sec']
# t2s_model = Text2SemanticLightningModule.load_from_checkpoint(checkpoint_path=gpt_path, config=config, map_location="cpu")#########todo
t2s_model = Text2SemanticLightningModule(config, "ojbk", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
if (is_half == True): t2s_model = t2s_model.half()
t2s_model = t2s_model.to(device)
t2s_model.eval()
total = sum([param.nelement() for param in t2s_model.parameters()])
print("Number of parameter: %.2fM" % (total / 1e6))
return vq_model, ssl_model, t2s_model, hps, config, hz, max_sec
def get_spepc(hps, filename):
audio=load_audio(filename,int(hps.data.sampling_rate))
audio=torch.FloatTensor(audio)
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(audio_norm, hps.data.filter_length,hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,center=False)
return spec
def create_tts_fn(vq_model, ssl_model, t2s_model, hps, config, hz, max_sec):
def tts_fn(ref_wav_path, prompt_text, prompt_language, text, text_language):
t0 = ttime()
prompt_text=prompt_text.strip("\n")
prompt_language,text=prompt_language,text.strip("\n")
print(text)
if len(text) > 50:
return f"Error: Text is too long, ({len(text)}>50)", None
with torch.no_grad():
wav16k, sr = librosa.load(ref_wav_path, sr=16000) # 派蒙
wav16k = torch.from_numpy(wav16k)
if(is_half==True):wav16k=wav16k.half().to(device)
else:wav16k=wav16k.to(device)
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)#.float()
codes = vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
t1 = ttime()
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
phones1=cleaned_text_to_sequence(phones1)
texts=text.split("\n")
audio_opt = []
zero_wav=np.zeros(int(hps.data.sampling_rate*0.3),dtype=np.float16 if is_half==True else np.float32)
for text in texts:
phones2, word2ph2, norm_text2 = clean_text(text, text_language)
phones2 = cleaned_text_to_sequence(phones2)
if(prompt_language=="zh"):bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
else:bert1 = torch.zeros((1024, len(phones1)),dtype=torch.float16 if is_half==True else torch.float32).to(device)
if(text_language=="zh"):bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
else:bert2 = torch.zeros((1024, len(phones2))).to(bert1)
bert = torch.cat([bert1, bert2], 1)
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
prompt = prompt_semantic.unsqueeze(0).to(device)
t2 = ttime()
with torch.no_grad():
# pred_semantic = t2s_model.model.infer(
pred_semantic,idx = t2s_model.model.infer_panel(
all_phoneme_ids,
all_phoneme_len,
prompt,
bert,
# prompt_phone_len=ph_offset,
top_k=config['inference']['top_k'],
early_stop_num=hz * max_sec)
t3 = ttime()
# print(pred_semantic.shape,idx)
pred_semantic = pred_semantic[:,-idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次
refer = get_spepc(hps, ref_wav_path)#.to(device)
if(is_half==True):refer=refer.half().to(device)
else:refer=refer.to(device)
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
audio = vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer).detach().cpu().numpy()[0, 0]###试试重建不带上prompt部分
audio_opt.append(audio)
audio_opt.append(zero_wav)
t4 = ttime()
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
return "Success", (hps.data.sampling_rate,(np.concatenate(audio_opt,0)*32768).astype(np.int16))
return tts_fn
splits={",","。","?","!",",",".","?","!","~",":",":","—","…",}#不考虑省略号
def split(todo_text):
todo_text = todo_text.replace("……", "。").replace("——", ",")
if (todo_text[-1] not in splits): todo_text += "。"
i_split_head = i_split_tail = 0
len_text = len(todo_text)
todo_texts = []
while (1):
if (i_split_head >= len_text): break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
if (todo_text[i_split_head] in splits):
i_split_head += 1
todo_texts.append(todo_text[i_split_tail:i_split_head])
i_split_tail = i_split_head
else:
i_split_head += 1
return todo_texts
def change_reference_audio(prompt_text, transcripts):
return transcripts[prompt_text]
models = []
models_info = {
"alice": {
"gpt_weight": "blue_archive/alice/alice-e15.ckpt",
"sovits_weight": "blue_archive/alice/alice_e8_s216.pth",
"title": "Blue Archive-天童アリス",
"cover": "https://pic.imgdb.cn/item/65a7dad6871b83018a48f494.png",
"example_reference": "召喚にお応じろ!ゴーレムよ!主人の命令に従い!"
},
"yuuka": {
"gpt_weight": "blue_archive/yuuka/yuuka-e15.ckpt",
"sovits_weight": "blue_archive/yuuka/yuuka_e8_s208.pth",
"title": "Blue Archive-早瀬ユウカ",
"cover": "https://pic.imgdb.cn/item/65a7da95871b83018a47a721.png",
"example_reference": "せ~ん~せ~い~。もう少し頑張ってください!"
},
"mika": {
"gpt_weight": "blue_archive/mika/mika-e15.ckpt",
"sovits_weight": "blue_archive/mika/mika_e8_s176.pth",
"title": "Blue Archive-聖園ミカ",
"cover": "https://pic.imgdb.cn/item/65a7daf6871b83018a499034.png",
"example_reference": "あけましておめでとう、先生!こんな私だけど、今年もよろしくね☆"
}
}
for i, info in models_info.items():
title = info['title']
cover = info['cover']
gpt_weight = info['gpt_weight']
sovits_weight = info['sovits_weight']
example_reference = info['example_reference']
transcripts = {}
with open(f"blue_archive/{i}/reference_audio/transcript.txt", 'r', encoding='utf-8') as file:
for line in file:
line = line.strip()
wav, t = line.split("|")
transcripts[t] = os.path.join(f"blue_archive/{i}/reference_audio", wav)
vq_model, ssl_model, t2s_model, hps, config, hz, max_sec = load_model(sovits_weight, gpt_weight)
models.append(
(
i,
title,
cover,
transcripts,
example_reference,
create_tts_fn(
vq_model, ssl_model, t2s_model, hps, config, hz, max_sec
)
)
)
with gr.Blocks() as app:
gr.Markdown(
"# <center> GPT-SoVITS \n"
"## <center> https://github.com/RVC-Boss/GPT-SoVITS\n"
)
with gr.Tabs():
for (name, title, cover, transcripts, example_reference, tts_fn) in models:
with gr.TabItem(name):
with gr.Row():
gr.Markdown(
'<div align="center">'
f'<a><strong>{title}</strong></a>'
f'<img style="width:auto;height:300px;" src="{cover}">' if cover else ""
'</div>')
with gr.Row():
with gr.Column():
prompt_text = gr.Dropdown(
label="Transcript of the Reference Audio",
value=example_reference,
choices=transcripts.keys()
)
inp_ref_audio = gr.Audio(
label="Reference Audio",
type="filepath",
interactive=False,
value=transcripts[example_reference]
)
transcripts_state = gr.State(value=transcripts)
prompt_text.change(
fn=change_reference_audio,
inputs=[prompt_text, transcripts_state],
outputs=[inp_ref_audio]
)
prompt_language = gr.State(value="ja")
with gr.Column():
text = gr.Textbox(label="Input Text", value="はいきなり、春の嵐のように突然訪れた。")
text_language = gr.Dropdown(
label="Language",
choices=["zh", "en", "ja"],
value="ja"
)
inference_button = gr.Button("Generate", variant="primary")
om = gr.Textbox(label="Output Message")
output = gr.Audio(label="Output Audio")
inference_button.click(
fn=tts_fn,
inputs=[inp_ref_audio, prompt_text, prompt_language, text, text_language],
outputs=[om, output]
)
app.queue().launch() |