dtcda / app.py
zmbfeng's picture
overall working
0caae26
raw
history blame
18 kB
import streamlit as st
import os
import fitz
import re
from transformers import AutoModelForSequenceClassification, BertTokenizer, BertModel, \
AutoTokenizer
import torch
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import nltk
from nltk.tokenize import sent_tokenize
from nltk.corpus import stopwords
def is_new_txt_file_upload(uploaded_txt_file):
if 'last_uploaded_txt_file' in st.session_state:
# Check if the newly uploaded file is different from the last one
if (uploaded_txt_file.name != st.session_state.last_uploaded_txt_file['name'] or
uploaded_txt_file.size != st.session_state.last_uploaded_txt_file['size']):
st.session_state.last_uploaded_txt_file = {'name': uploaded_txt_file.name, 'size': uploaded_txt_file.size}
# st.write("A new src image file has been uploaded.")
return True
else:
# st.write("The same src image file has been re-uploaded.")
return False
else:
# st.write("This is the first file upload detected.")
st.session_state.last_uploaded_txt_file = {'name': uploaded_txt_file.name, 'size': uploaded_txt_file.size}
return True
def is_new_file_upload(uploaded_file):
if 'last_uploaded_file' in st.session_state:
# Check if the newly uploaded file is different from the last one
if (uploaded_file.name != st.session_state.last_uploaded_file['name'] or
uploaded_file.size != st.session_state.last_uploaded_file['size']):
st.session_state.last_uploaded_file = {'name': uploaded_file.name, 'size': uploaded_file.size}
# st.write("A new src image file has been uploaded.")
return True
else:
# st.write("The same src image file has been re-uploaded.")
return False
else:
# st.write("This is the first file upload detected.")
st.session_state.last_uploaded_file = {'name': uploaded_file.name, 'size': uploaded_file.size}
return True
def add_commonality_to_similarity_score(similarity, sentence_to_find_similarity_score, query_to_find_similiarty_score):
# Tokenize both the sentence and the query
# sentence_words = set(sentence.split())
# query_words = set(query.split())
sentence_words = set(word for word in sentence_to_find_similarity_score.split() if word.lower() not in st.session_state.stop_words)
query_words = set(word for word in query_to_find_similiarty_score.split() if word.lower() not in st.session_state.stop_words)
# Calculate the number of common words
common_words = len(sentence_words.intersection(query_words))
# Adjust the similarity score with the common words count
combined_score = similarity + (common_words / max(len(query_words),
1)) # Normalize by the length of the query to keep the score between -1 and 1
return combined_score, similarity, (common_words / max(len(query_words), 1))
def contradiction_detection(premise, hypothesis):
inputs = st.session_state.roberta_tokenizer.encode_plus(premise, hypothesis, return_tensors="pt", truncation=True)
# Get model predictions
outputs = st.session_state.roberta_model(**inputs)
# Get the logits (raw predictions before softmax)
logits = outputs.logits
# Apply softmax to get probabilities for each class
probabilities = torch.softmax(logits, dim=1)
# Class labels: 0 = entailment, 1 = neutral, 2 = contradiction
predicted_class = torch.argmax(probabilities, dim=1).item()
# Class labels
labels = ["Contradiction", "Neutral", "Entailment"]
# Output the result
print(f"Prediction: {labels[predicted_class]}")
return {labels[predicted_class]}
if 'is_initialized' not in st.session_state:
st.session_state['is_initialized'] = True
nltk.download('punkt')
nltk.download('stopwords')
# print("stop words start")
# print(stopwords.words('english'))
# print("stop words end")
stop_words_list = stopwords.words('english')
st.session_state.stop_words = set(stop_words_list)
st.session_state.bert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", )
st.session_state.bert_model = BertModel.from_pretrained("bert-base-uncased", ).to('cuda')
st.session_state.roberta_tokenizer = AutoTokenizer.from_pretrained("roberta-large-mnli")
st.session_state.roberta_model = AutoModelForSequenceClassification.from_pretrained("roberta-large-mnli")
def encode_sentence(sentence_to_be_encoded):
if len(sentence_to_be_encoded.strip()) < 4:
return None
sentence_tokens = st.session_state.bert_tokenizer(sentence_to_be_encoded, return_tensors="pt", padding=True, truncation=True).to(
'cuda')
with torch.no_grad():
sentence_encoding = st.session_state.bert_model(**sentence_tokens).last_hidden_state[:, 0, :].cpu().numpy()
return sentence_encoding
def encode_paragraph(paragraph_to_be_encoded):
sentence_encodings_for_encoding_paragraph = []
paragraph_without_newline = paragraph_to_be_encoded.replace("\n", "")
sentences_for_encoding_paragraph = sent_tokenize(paragraph_without_newline)
for sentence_for_encoding_paragraph in sentences_for_encoding_paragraph:
# if sentence.strip().endswith('?'):
# sentence_encodings.append(None)
# continue
sentence_encoding = encode_sentence(sentence_for_encoding_paragraph)
sentence_encodings_for_encoding_paragraph.append([sentence_for_encoding_paragraph, sentence_encoding])
return sentence_encodings_for_encoding_paragraph
if 'list_count' in st.session_state:
st.write(f'The number of elements at the top level of the hierarchy: {st.session_state.list_count}')
if 'paragraph_sentence_encodings' not in st.session_state:
print("start embedding paragarphs")
read_progress_bar = st.progress(0)
st.session_state.paragraph_sentence_encodings = []
for index, paragraph in enumerate(st.session_state.restored_paragraphs):
# print(paragraph)
progress_percentage = index / (st.session_state.list_count - 1)
# print(progress_percentage)
read_progress_bar.progress(progress_percentage)
# sentence_encodings.append([sentence,bert_model(**sentence_tokens).last_hidden_state[:, 0, :].detach().numpy()])
sentence_encodings = encode_paragraph(paragraph['paragraph'])
st.session_state.paragraph_sentence_encodings.append([paragraph, sentence_encodings])
st.rerun()
big_text = """
<div style='text-align: center;'>
<h1 style='font-size: 30x;'>Contradiction Dectection</h1>
</div>
"""
# Display the styled text
st.markdown(big_text, unsafe_allow_html=True)
def convert_pdf_to_paragraph_list(pdf_doc_to_paragraph_list):
paragraphs = []
start_page = 1
for page_num in range(start_page - 1, len(pdf_doc_to_paragraph_list)): # start_page - 1 to adjust for 0-based index
page = pdf_doc_to_paragraph_list.load_page(page_num)
blocks = page.get_text("blocks")
for block in blocks:
x0, y0, x1, y1, text, block_type, flags = block
if text.strip() != "":
text = text.strip()
text = re.sub(r'\n\s+\n', '\n\n', text)
list_pattern = re.compile(r'^\s*((?:\d+\.|[a-zA-Z]\.|[*-])\s+.+)', re.MULTILINE)
match = list_pattern.search(text)
containsList = False
if match:
containsList = True
# print ("list detected")
if bool(re.search(r'\n{2,}', text)):
substrings = re.split(r'\n{2,}', text)
for substring in substrings:
if substring.strip() != "":
paragraph_for_converting_pdf = substring
paragraphs.append(
{"paragraph": paragraph_for_converting_pdf, "containsList": containsList, "page_num": page_num,
"text": text})
# print(f"<substring> {substring} </substring>")
else:
paragraph_for_converting_pdf = text
paragraphs.append(
{"paragraph": paragraph_for_converting_pdf, "containsList": containsList, "page_num": page_num, "text": None})
return paragraphs
uploaded_pdf_file = st.file_uploader("Upload a PDF file",
type=['pdf'])
st.markdown(
f'<a href="https://ikmtechnology.github.io/ikmtechnology/Sample_Master_Sample_Life_Insurance_Policy.pdf" target="_blank">Sample Master PDF download and then upload to above</a>',
unsafe_allow_html=True)
st.markdown(
"sample queries to invoke contradiction: <br/> A Member shall be deemed disabled under this provision if, due to illness or injury, the Member is unable to safely and fully carry out two or more Activities of Daily Living without the assistance or verbal prompting of another individual.",
unsafe_allow_html=True)
st.markdown(
f'<a href="https://ikmtechnology.github.io/ikmtechnology/Sample_Secondary.txt" target="_blank">Sample Secondary txt download and then upload to above</a>',
unsafe_allow_html=True)
if uploaded_pdf_file is not None:
if is_new_file_upload(uploaded_pdf_file):
print("is new file uploaded")
if 'prev_query' in st.session_state:
del st.session_state['prev_query']
if 'paragraph_sentence_encodings' in st.session_state:
del st.session_state['paragraph_sentence_encodings']
save_path = './uploaded_files'
if not os.path.exists(save_path):
os.makedirs(save_path)
with open(os.path.join(save_path, uploaded_pdf_file.name), "wb") as f:
f.write(uploaded_pdf_file.getbuffer()) # Write the file to the specified location
st.success(f'Saved file temp_{uploaded_pdf_file.name} in {save_path}')
st.session_state.uploaded_path = os.path.join(save_path, uploaded_pdf_file.name)
# st.session_state.page_count = utils.get_pdf_page_count(st.session_state.uploaded_pdf_path)
# print("page_count=",st.session_state.page_count)
doc = fitz.open(st.session_state.uploaded_path)
st.session_state.restored_paragraphs = convert_pdf_to_paragraph_list(doc)
if isinstance(st.session_state.restored_paragraphs, list):
# Count the restored_paragraphs of top-level elements
st.session_state.list_count = len(st.session_state.restored_paragraphs)
st.write(f'The number of elements at the top level of the hierarchy: {st.session_state.list_count}')
st.rerun()
def contradiction_detection_for_sentence(cd_query):
query_encoding = encode_sentence(cd_query)
total_count = len(st.session_state.paragraph_sentence_encodings)
processing_progress_bar = st.progress(0)
sentence_scores, paragraph_scores = find_sentences_scores(
st.session_state.paragraph_sentence_encodings, query_encoding, cd_query, processing_progress_bar, total_count)
sorted_paragraph_scores = sorted(paragraph_scores, key=lambda x: x[0], reverse=True)
st.write("Top scored paragraphs and their scores:")
for i, (similarity_score, commonality_score, paragraph_from_sorted_paragraph_scores) in enumerate(
sorted_paragraph_scores[:3]): # number of paragraphs to consider
# st.write("top_three_sentences: ", paragraph['top_three_sentences'])
st.write("paragarph number ***", i)
prev_contradiction_detected = True
for top_sentence in paragraph_from_sorted_paragraph_scores['top_three_sentences']:
if prev_contradiction_detected:
contradiction_detection_result = contradiction_detection(cd_query, top_sentence[1])
if contradiction_detection_result == {"Contradiction"}:
st.write("master document page number ",
paragraph_from_sorted_paragraph_scores['original_text']['page_num'])
st.write("master document sentence: ", top_sentence[1])
st.write("secondary document sentence: ", cd_query)
st.write(contradiction_detection_result)
# st.write(contradiction_detection(st.session_state.premise, top_sentence[1]))
else:
prev_contradiction_detected = False
else:
break
def find_sentences_scores(paragraph_sentence_encodings, query_encoding, query_plain, processing_progress_bar, total_count):
paragraph_scores = []
sentence_scores = []
for paragraph_sentence_encoding_index, paragraph_sentence_encoding in enumerate(paragraph_sentence_encodings):
find_sentences_scores_progress_percentage = paragraph_sentence_encoding_index / (total_count - 1)
processing_progress_bar.progress(find_sentences_scores_progress_percentage)
sentence_similarities = []
for sentence_encoding in paragraph_sentence_encoding[1]:
if sentence_encoding:
similarity = cosine_similarity(query_encoding, sentence_encoding[1])[0][0]
combined_score, similarity_score, commonality_score = add_commonality_to_similarity_score(similarity,
sentence_encoding[
0],
query_plain)
# print(f"{sentence_encoding[0]} {combined_score} {similarity_score} {commonality_score}")
sentence_similarities.append((combined_score, sentence_encoding[0], commonality_score))
sentence_scores.append((combined_score, sentence_encoding[0]))
sentence_similarities.sort(reverse=True, key=lambda x: x[0])
# print(sentence_similarities)
if len(sentence_similarities) >= 3:
top_three_avg_similarity = np.mean([s[0] for s in sentence_similarities[:3]])
top_three_avg_commonality = np.mean([s[2] for s in sentence_similarities[:3]])
top_three_sentences = sentence_similarities[:3]
elif sentence_similarities:
top_three_avg_similarity = np.mean([s[0] for s in sentence_similarities])
top_three_avg_commonality = np.mean([s[2] for s in sentence_similarities])
top_three_sentences = sentence_similarities
else:
top_three_avg_similarity = 0
top_three_avg_commonality = 0
top_three_sentences = []
# print(f"top_three_sentences={top_three_sentences}")
# top_three_texts = [s[1] for s in top_three_sentences]
# remaining_texts = [s[0] for s in paragraph_sentence_encoding[1] if s and s[0] not in top_three_texts]
# reordered_paragraph = top_three_texts + remaining_texts
#
# original_paragraph = ' '.join([s[0] for s in paragraph_sentence_encoding[1] if s])
# modified_paragraph = ' '.join(reordered_paragraph)
paragraph_scores.append(
(top_three_avg_similarity, top_three_avg_commonality,
{'top_three_sentences': top_three_sentences, 'original_text': paragraph_sentence_encoding[0]})
)
sentence_scores = sorted(sentence_scores, key=lambda x: x[0], reverse=True)
return sentence_scores, paragraph_scores
if 'paragraph_sentence_encodings' in st.session_state:
query = st.text_input("Enter your query")
if query:
if 'prev_query' not in st.session_state or st.session_state.prev_query != query:
# if True:
st.session_state.prev_query = query
st.session_state.premise = query
contradiction_detection_for_sentence(query)
uploaded_text_file = st.file_uploader("Choose a .txt file", type="txt")
if uploaded_text_file is not None:
if is_new_txt_file_upload(uploaded_text_file):
#if True:
lines = uploaded_text_file.readlines()
# Initialize an empty list to store line number and text
line_list = []
# Iterate through each line and add to the list
for line_number, line in enumerate(lines, start=1):
# Decode the line (since it will be in bytes)
decoded_line = line.decode("utf-8").strip()
line_list.append((line_number, decoded_line))
# Display the list of tuples
st.write("Line Number and Line Content:")
for item in line_list:
st.write(f"Line {item[0]}: {item[1]}")
sentences = sent_tokenize(item[1])
for sentence in sentences:
st.write(f"sententce {sentence}")
contradiction_detection_for_sentence(sentence)
# print(top_sentence[1])
# st.write(f"Similarity Score: {similarity_score}, Commonality Score: {commonality_score}")
# st.write("top_three_sentences: ", paragraph['top_three_sentences'])
# st.write("Original Paragraph: ", paragraph['original_text'])
# A Member will be considered Actively at Work if he or she is able and available for active performance of all of his or her regular duties
# A Member will be considered as inactive at Work if he or she is able and available for active performance of all of his or her regular duties
# A Member shall be deemed inactive at Work if he or she is capable and available to perform all of his or her regular responsibilities.
# st.write("Modified Paragraph: ", paragraph['modified_text'])