File size: 14,291 Bytes
5535d25
897250e
 
4c2c5b7
 
c11d9f5
561a0db
 
 
 
 
 
5aa1276
561a0db
897250e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd247ef
5aa1276
 
 
 
 
 
 
 
 
 
 
b91bc9f
5aa1276
0738fe9
 
95e6c0d
0738fe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d745e5
95e6c0d
43d2a91
 
 
 
 
2917b3d
 
 
 
 
43d2a91
 
c11d9f5
 
40ddb2b
 
 
 
 
 
 
 
 
1d745e5
3aa8d73
 
 
 
 
 
 
 
 
 
 
43d2a91
 
 
 
 
 
 
 
 
 
 
 
 
3aa8d73
43d2a91
3aa8d73
43d2a91
 
3aa8d73
897250e
 
3aa8d73
897250e
 
 
 
 
bd247ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c2c5b7
 
897250e
 
 
5aa1276
1481eaa
 
 
 
4c2c5b7
 
897250e
bc4edec
 
 
 
897250e
 
 
4c2c5b7
 
 
 
897250e
 
bd247ef
4c2c5b7
bd247ef
 
4c2c5b7
 
 
 
897250e
561a0db
5aa1276
 
b91bc9f
5aa1276
2f33806
 
c11d9f5
c7fa677
7cb50e9
c7fa677
 
 
 
 
 
 
 
 
 
 
 
 
bd247ef
 
 
c7fa677
 
 
 
1d745e5
c7fa677
 
 
 
 
 
 
 
 
 
 
 
a9683b5
 
 
 
 
 
 
c7fa677
 
 
 
 
 
a9683b5
c7fa677
 
 
 
 
 
 
 
 
 
 
c11d9f5
 
 
 
0738fe9
c11d9f5
 
 
1d745e5
c11d9f5
c7fa677
95e6c0d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import streamlit as st
import os
import json
import fitz
import re
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AutoModelForSequenceClassification, BertTokenizer, BertModel,T5Tokenizer, T5ForConditionalGeneration,AutoTokenizer, AutoModelForSeq2SeqLM

import torch
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import nltk
from nltk.tokenize import sent_tokenize
from nltk.corpus import stopwords

def is_new_file_upload(uploaded_file):
    if 'last_uploaded_file' in st.session_state:
        # Check if the newly uploaded file is different from the last one
        if (uploaded_file.name != st.session_state.last_uploaded_file['name'] or
                uploaded_file.size != st.session_state.last_uploaded_file['size']):
            st.session_state.last_uploaded_file = {'name': uploaded_file.name, 'size': uploaded_file.size}
            # st.write("A new src image file has been uploaded.")
            return True
        else:
            # st.write("The same src image file has been re-uploaded.")
            return False
    else:
        # st.write("This is the first file upload detected.")
        st.session_state.last_uploaded_file = {'name': uploaded_file.name, 'size': uploaded_file.size}
        return True
def add_commonality_to_similarity_score(similarity, sentence, query):
    # Tokenize both the sentence and the query
    # sentence_words = set(sentence.split())
    # query_words = set(query.split())
    sentence_words = set(word for word in sentence.split() if word.lower() not in st.session_state.stop_words)
    query_words = set(word for word in query.split() if word.lower() not in st.session_state.stop_words)

    # Calculate the number of common words
    common_words = len(sentence_words.intersection(query_words))

    # Adjust the similarity score with the common words count
    combined_score = similarity + (common_words / max(len(query_words), 1))  # Normalize by the length of the query to keep the score between -1 and 1
    return combined_score,similarity,(common_words / max(len(query_words), 1))

def contradiction_detection(premise,hypothesis):
    inputs = st.session_state.roberta_tokenizer.encode_plus(premise, hypothesis, return_tensors="pt", truncation=True)

    # Get model predictions
    outputs = st.session_state.roberta_model(**inputs)

    # Get the logits (raw predictions before softmax)
    logits = outputs.logits

    # Apply softmax to get probabilities for each class
    probabilities = torch.softmax(logits, dim=1)

    # Class labels: 0 = entailment, 1 = neutral, 2 = contradiction
    predicted_class = torch.argmax(probabilities, dim=1).item()

    # Class labels
    labels = ["Contradiction", "Neutral", "Entailment"]

    # Output the result
    print(f"Prediction: {labels[predicted_class]}")
    return {labels[predicted_class]}


if 'is_initialized' not in st.session_state:
    st.session_state['is_initialized'] = True

    nltk.download('punkt')
    nltk.download('stopwords')
    # print("stop words start")
    # print(stopwords.words('english'))
    # print("stop words end")
    stop_words_list = stopwords.words('english')
    st.session_state.stop_words = set(stop_words_list)
    st.session_state.bert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", )
    st.session_state.bert_model = BertModel.from_pretrained("bert-base-uncased", ).to('cuda')
    st.session_state.roberta_tokenizer = AutoTokenizer.from_pretrained("roberta-large-mnli")
    st.session_state.roberta_model = AutoModelForSequenceClassification.from_pretrained("roberta-large-mnli")
def encode_sentence(sentence):
    if len(sentence.strip()) < 4:
        return None

    sentence_tokens = st.session_state.bert_tokenizer(sentence, return_tensors="pt", padding=True, truncation=True).to(
        'cuda')
    with torch.no_grad():
        sentence_encoding = st.session_state.bert_model(**sentence_tokens).last_hidden_state[:, 0, :].cpu().numpy()
    return sentence_encoding

def encode_paragraph(paragraph):
    sentence_encodings = []
    paragraph_without_newline = paragraph.replace("\n", "")
    sentences = sent_tokenize(paragraph_without_newline)
    for sentence in sentences:
        # if sentence.strip().endswith('?'):
        #     sentence_encodings.append(None)
        #     continue
        sentence_encoding = encode_sentence(sentence)
        sentence_encodings.append([sentence, sentence_encoding])
    return sentence_encodings
if 'list_count' in st.session_state:
    st.write(f'The number of elements at the top level of the hierarchy: {st.session_state.list_count }')
    if 'paragraph_sentence_encodings' not in st.session_state:
        print("start embedding paragarphs")
        read_progress_bar = st.progress(0)
        st.session_state.paragraph_sentence_encodings = []
        for index,paragraph in enumerate(st.session_state.restored_paragraphs):
            #print(paragraph)

            progress_percentage = (index) / (st.session_state.list_count - 1)
            # print(progress_percentage)
            read_progress_bar.progress(progress_percentage)


                # sentence_encodings.append([sentence,bert_model(**sentence_tokens).last_hidden_state[:, 0, :].detach().numpy()])
            sentence_encodings=encode_paragraph(paragraph['paragraph'])
            st.session_state.paragraph_sentence_encodings.append([paragraph, sentence_encodings])
        st.rerun()

big_text = """
    <div style='text-align: center;'>
        <h1 style='font-size: 30x;'>Contradiction Dectection</h1>
    </div>
    """
    # Display the styled text
st.markdown(big_text, unsafe_allow_html=True)

def convert_pdf_to_paragraph_list(doc):
    paragraphs = []
    sentence_endings = ('.', '!', '?')
    start_page = 1

    for page_num in range(start_page - 1, len(doc)):  # start_page - 1 to adjust for 0-based index
        page = doc.load_page(page_num)
        blocks = page.get_text("blocks")

        block_index = 1
        for block in blocks:
            x0, y0, x1, y1, text, block_type, flags = block
            if text.strip() != "":
                text = text.strip()
                text = re.sub(r'\n\s+\n', '\n\n', text)
                list_pattern = re.compile(r'^\s*((?:\d+\.|[a-zA-Z]\.|[*-])\s+.+)', re.MULTILINE)
                match = list_pattern.search(text)
                containsList = False
                if match:
                    containsList = True
                    # print ("list detected")
                paragraph = ""
                if bool(re.search(r'\n{2,}', text)):
                    substrings = re.split(r'\n{2,}', text)
                    for substring in substrings:
                        if substring.strip() != "":
                            paragraph = substring
                            paragraphs.append(
                                {"paragraph": paragraph, "containsList": containsList, "page_num": page_num,
                                 "text": text});
                            # print(f"<substring> {substring} </substring>")
                else:
                    paragraph = text
                    paragraphs.append(
                        {"paragraph": paragraph, "containsList": containsList, "page_num": page_num, "text": None});
    return  paragraphs

uploaded_pdf_file = st.file_uploader("Upload a PDF file",
                                     type=['pdf'])
st.markdown(
    f'<a href="https://ikmtechnology.github.io/ikmtechnology/untethered_extracted_paragraphs.json" target="_blank">Sample 1 download and then upload to above</a>',
    unsafe_allow_html=True)
st.markdown("sample queries for above file: <br/> What is death? What is a lucid dream? What is the seat of consciousness?",unsafe_allow_html=True)
st.markdown(
f'<a href="https://ikmtechnology.github.io/ikmtechnology/the_business_case_for_ai_extracted_paragraphs.json" target="_blank">Sample 2 download and then upload to above</a>',
    unsafe_allow_html=True)
st.markdown("sample queries for above file: <br/> what does nontechnical managers worry about? what if you put all the knowledge, frameworks, and tips from this book to full use? tell me about AI agent",unsafe_allow_html=True)
if uploaded_pdf_file is not None:
    if is_new_file_upload(uploaded_pdf_file):
        print("is new file uploaded")
        if 'prev_query' in st.session_state:
            del st.session_state['prev_query']
        if 'paragraph_sentence_encodings' in st.session_state:
            del st.session_state['paragraph_sentence_encodings']
        save_path = './uploaded_files'
        if not os.path.exists(save_path):
            os.makedirs(save_path)
        with open(os.path.join(save_path, uploaded_pdf_file.name), "wb") as f:
            f.write(uploaded_pdf_file.getbuffer())  # Write the file to the specified location
            st.success(f'Saved file temp_{uploaded_pdf_file.name} in {save_path}')
            st.session_state.uploaded_path=os.path.join(save_path, uploaded_pdf_file.name)
            # st.session_state.page_count = utils.get_pdf_page_count(st.session_state.uploaded_pdf_path)
            # print("page_count=",st.session_state.page_count)

        doc = fitz.open(st.session_state.uploaded_path)

        st.session_state.restored_paragraphs=convert_pdf_to_paragraph_list(doc)
        if isinstance(st.session_state.restored_paragraphs, list):
            # Count the restored_paragraphs of top-level elements
            st.session_state.list_count = len(st.session_state.restored_paragraphs)
            st.write(f'The number of elements at the top level of the hierarchy: {st.session_state.list_count}')
        st.rerun()

if 'paragraph_sentence_encodings' in st.session_state:
    query = st.text_input("Enter your query")

    if query:
        if 'prev_query' not in st.session_state or st.session_state.prev_query != query:
            st.session_state.prev_query = query
            st.session_state.premise = query

            query_encoding = encode_sentence(query)
            paragraph_scores = []
            sentence_scores = []
            total_count = len(st.session_state.paragraph_sentence_encodings)
            processing_progress_bar = st.progress(0)

            for index, paragraph_sentence_encoding in enumerate(st.session_state.paragraph_sentence_encodings):
                progress_percentage = index / (total_count - 1)
                processing_progress_bar.progress(progress_percentage)

                sentence_similarities = []
                for sentence_encoding in paragraph_sentence_encoding[1]:
                    if sentence_encoding:
                        similarity = cosine_similarity(query_encoding, sentence_encoding[1])[0][0]
                        combined_score, similarity_score, commonality_score = add_commonality_to_similarity_score(similarity,
                                                                                                                  sentence_encoding[0],
                                                                                                                  query)
                        sentence_similarities.append((combined_score, sentence_encoding[0], commonality_score))
                        sentence_scores.append((combined_score, sentence_encoding[0]))

                sentence_similarities.sort(reverse=True, key=lambda x: x[0])
                # print(sentence_similarities)
                if len(sentence_similarities) >= 3:
                    top_three_avg_similarity = np.mean([s[0] for s in sentence_similarities[:3]])
                    top_three_avg_commonality = np.mean([s[2] for s in sentence_similarities[:3]])
                    top_three_sentences = sentence_similarities[:3]
                elif sentence_similarities:
                    top_three_avg_similarity = np.mean([s[0] for s in sentence_similarities])
                    top_three_avg_commonality = np.mean([s[2] for s in sentence_similarities])
                    top_three_sentences = sentence_similarities
                else:
                    top_three_avg_similarity = 0
                    top_three_avg_commonality = 0
                    top_three_sentences = []
                # print(f"top_three_sentences={top_three_sentences}")
                # top_three_texts = [s[1] for s in top_three_sentences]
                # remaining_texts = [s[0] for s in paragraph_sentence_encoding[1] if s and s[0] not in top_three_texts]
                # reordered_paragraph = top_three_texts + remaining_texts
                #
                # original_paragraph = ' '.join([s[0] for s in paragraph_sentence_encoding[1] if s])
                # modified_paragraph = ' '.join(reordered_paragraph)




                paragraph_scores.append(
                    (top_three_avg_similarity, top_three_avg_commonality,
                     {'top_three_sentences': top_three_sentences, 'original_text': paragraph_sentence_encoding[0]})
                )

            sentence_scores = sorted(sentence_scores, key=lambda x: x[0], reverse=True)
            st.session_state.paragraph_scores = sorted(paragraph_scores, key=lambda x: x[0], reverse=True)

        if 'paragraph_scores' in st.session_state:


            st.write("Top scored paragraphs and their scores:")
            for i, (similarity_score, commonality_score, paragraph) in enumerate(
                    st.session_state.paragraph_scores[:5]):
                #st.write("top_three_sentences: ", paragraph['top_three_sentences'])

                for top_sentence in paragraph['top_three_sentences']:
                    st.write("hyppthesis: ", top_sentence[1])
                    st.write(contradiction_detection(st.session_state.premise,top_sentence[1]))
                    #print(top_sentence[1])
                # st.write(f"Similarity Score: {similarity_score}, Commonality Score: {commonality_score}")
                # st.write("top_three_sentences: ", paragraph['top_three_sentences'])
                st.write("Original Paragraph: ", paragraph['original_text'])
                #A Member will be considered Actively at Work if he or she is able and available for active performance of all of his or her regular duties
                # st.write("Modified Paragraph: ", paragraph['modified_text'])