File size: 14,243 Bytes
5535d25 897250e 4c2c5b7 c11d9f5 561a0db 5aa1276 561a0db 897250e bd247ef 5aa1276 b91bc9f 5aa1276 0738fe9 95e6c0d 0738fe9 1d745e5 95e6c0d 43d2a91 2917b3d 43d2a91 c11d9f5 40ddb2b 1d745e5 3aa8d73 43d2a91 3aa8d73 43d2a91 3aa8d73 43d2a91 3aa8d73 897250e 3aa8d73 897250e bd247ef 4c2c5b7 897250e 5aa1276 1481eaa 4c2c5b7 897250e bc4edec 897250e 4c2c5b7 897250e bd247ef 4c2c5b7 bd247ef 4c2c5b7 897250e 561a0db 49fa3c4 5aa1276 b91bc9f 5aa1276 2f33806 c11d9f5 c7fa677 7cb50e9 c7fa677 49fa3c4 c7fa677 49fa3c4 c7fa677 c11d9f5 0738fe9 c11d9f5 1d745e5 c11d9f5 c7fa677 95e6c0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import streamlit as st
import os
import json
import fitz
import re
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AutoModelForSequenceClassification, BertTokenizer, BertModel,T5Tokenizer, T5ForConditionalGeneration,AutoTokenizer, AutoModelForSeq2SeqLM
import torch
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import nltk
from nltk.tokenize import sent_tokenize
from nltk.corpus import stopwords
def is_new_file_upload(uploaded_file):
if 'last_uploaded_file' in st.session_state:
# Check if the newly uploaded file is different from the last one
if (uploaded_file.name != st.session_state.last_uploaded_file['name'] or
uploaded_file.size != st.session_state.last_uploaded_file['size']):
st.session_state.last_uploaded_file = {'name': uploaded_file.name, 'size': uploaded_file.size}
# st.write("A new src image file has been uploaded.")
return True
else:
# st.write("The same src image file has been re-uploaded.")
return False
else:
# st.write("This is the first file upload detected.")
st.session_state.last_uploaded_file = {'name': uploaded_file.name, 'size': uploaded_file.size}
return True
def add_commonality_to_similarity_score(similarity, sentence, query):
# Tokenize both the sentence and the query
# sentence_words = set(sentence.split())
# query_words = set(query.split())
sentence_words = set(word for word in sentence.split() if word.lower() not in st.session_state.stop_words)
query_words = set(word for word in query.split() if word.lower() not in st.session_state.stop_words)
# Calculate the number of common words
common_words = len(sentence_words.intersection(query_words))
# Adjust the similarity score with the common words count
combined_score = similarity + (common_words / max(len(query_words), 1)) # Normalize by the length of the query to keep the score between -1 and 1
return combined_score,similarity,(common_words / max(len(query_words), 1))
def contradiction_detection(premise,hypothesis):
inputs = st.session_state.roberta_tokenizer.encode_plus(premise, hypothesis, return_tensors="pt", truncation=True)
# Get model predictions
outputs = st.session_state.roberta_model(**inputs)
# Get the logits (raw predictions before softmax)
logits = outputs.logits
# Apply softmax to get probabilities for each class
probabilities = torch.softmax(logits, dim=1)
# Class labels: 0 = entailment, 1 = neutral, 2 = contradiction
predicted_class = torch.argmax(probabilities, dim=1).item()
# Class labels
labels = ["Contradiction", "Neutral", "Entailment"]
# Output the result
print(f"Prediction: {labels[predicted_class]}")
return {labels[predicted_class]}
if 'is_initialized' not in st.session_state:
st.session_state['is_initialized'] = True
nltk.download('punkt')
nltk.download('stopwords')
# print("stop words start")
# print(stopwords.words('english'))
# print("stop words end")
stop_words_list = stopwords.words('english')
st.session_state.stop_words = set(stop_words_list)
st.session_state.bert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", )
st.session_state.bert_model = BertModel.from_pretrained("bert-base-uncased", ).to('cuda')
st.session_state.roberta_tokenizer = AutoTokenizer.from_pretrained("roberta-large-mnli")
st.session_state.roberta_model = AutoModelForSequenceClassification.from_pretrained("roberta-large-mnli")
def encode_sentence(sentence):
if len(sentence.strip()) < 4:
return None
sentence_tokens = st.session_state.bert_tokenizer(sentence, return_tensors="pt", padding=True, truncation=True).to(
'cuda')
with torch.no_grad():
sentence_encoding = st.session_state.bert_model(**sentence_tokens).last_hidden_state[:, 0, :].cpu().numpy()
return sentence_encoding
def encode_paragraph(paragraph):
sentence_encodings = []
paragraph_without_newline = paragraph.replace("\n", "")
sentences = sent_tokenize(paragraph_without_newline)
for sentence in sentences:
# if sentence.strip().endswith('?'):
# sentence_encodings.append(None)
# continue
sentence_encoding = encode_sentence(sentence)
sentence_encodings.append([sentence, sentence_encoding])
return sentence_encodings
if 'list_count' in st.session_state:
st.write(f'The number of elements at the top level of the hierarchy: {st.session_state.list_count }')
if 'paragraph_sentence_encodings' not in st.session_state:
print("start embedding paragarphs")
read_progress_bar = st.progress(0)
st.session_state.paragraph_sentence_encodings = []
for index,paragraph in enumerate(st.session_state.restored_paragraphs):
#print(paragraph)
progress_percentage = (index) / (st.session_state.list_count - 1)
# print(progress_percentage)
read_progress_bar.progress(progress_percentage)
# sentence_encodings.append([sentence,bert_model(**sentence_tokens).last_hidden_state[:, 0, :].detach().numpy()])
sentence_encodings=encode_paragraph(paragraph['paragraph'])
st.session_state.paragraph_sentence_encodings.append([paragraph, sentence_encodings])
st.rerun()
big_text = """
<div style='text-align: center;'>
<h1 style='font-size: 30x;'>Contradiction Dectection</h1>
</div>
"""
# Display the styled text
st.markdown(big_text, unsafe_allow_html=True)
def convert_pdf_to_paragraph_list(doc):
paragraphs = []
sentence_endings = ('.', '!', '?')
start_page = 1
for page_num in range(start_page - 1, len(doc)): # start_page - 1 to adjust for 0-based index
page = doc.load_page(page_num)
blocks = page.get_text("blocks")
block_index = 1
for block in blocks:
x0, y0, x1, y1, text, block_type, flags = block
if text.strip() != "":
text = text.strip()
text = re.sub(r'\n\s+\n', '\n\n', text)
list_pattern = re.compile(r'^\s*((?:\d+\.|[a-zA-Z]\.|[*-])\s+.+)', re.MULTILINE)
match = list_pattern.search(text)
containsList = False
if match:
containsList = True
# print ("list detected")
paragraph = ""
if bool(re.search(r'\n{2,}', text)):
substrings = re.split(r'\n{2,}', text)
for substring in substrings:
if substring.strip() != "":
paragraph = substring
paragraphs.append(
{"paragraph": paragraph, "containsList": containsList, "page_num": page_num,
"text": text});
# print(f"<substring> {substring} </substring>")
else:
paragraph = text
paragraphs.append(
{"paragraph": paragraph, "containsList": containsList, "page_num": page_num, "text": None});
return paragraphs
uploaded_pdf_file = st.file_uploader("Upload a PDF file",
type=['pdf'])
st.markdown(
f'<a href="https://ikmtechnology.github.io/ikmtechnology/untethered_extracted_paragraphs.json" target="_blank">Sample 1 download and then upload to above</a>',
unsafe_allow_html=True)
st.markdown("sample queries for above file: <br/> What is death? What is a lucid dream? What is the seat of consciousness?",unsafe_allow_html=True)
st.markdown(
f'<a href="https://ikmtechnology.github.io/ikmtechnology/the_business_case_for_ai_extracted_paragraphs.json" target="_blank">Sample 2 download and then upload to above</a>',
unsafe_allow_html=True)
st.markdown("sample queries for above file: <br/> what does nontechnical managers worry about? what if you put all the knowledge, frameworks, and tips from this book to full use? tell me about AI agent",unsafe_allow_html=True)
if uploaded_pdf_file is not None:
if is_new_file_upload(uploaded_pdf_file):
print("is new file uploaded")
if 'prev_query' in st.session_state:
del st.session_state['prev_query']
if 'paragraph_sentence_encodings' in st.session_state:
del st.session_state['paragraph_sentence_encodings']
save_path = './uploaded_files'
if not os.path.exists(save_path):
os.makedirs(save_path)
with open(os.path.join(save_path, uploaded_pdf_file.name), "wb") as f:
f.write(uploaded_pdf_file.getbuffer()) # Write the file to the specified location
st.success(f'Saved file temp_{uploaded_pdf_file.name} in {save_path}')
st.session_state.uploaded_path=os.path.join(save_path, uploaded_pdf_file.name)
# st.session_state.page_count = utils.get_pdf_page_count(st.session_state.uploaded_pdf_path)
# print("page_count=",st.session_state.page_count)
doc = fitz.open(st.session_state.uploaded_path)
st.session_state.restored_paragraphs=convert_pdf_to_paragraph_list(doc)
if isinstance(st.session_state.restored_paragraphs, list):
# Count the restored_paragraphs of top-level elements
st.session_state.list_count = len(st.session_state.restored_paragraphs)
st.write(f'The number of elements at the top level of the hierarchy: {st.session_state.list_count}')
st.rerun()
def find_sentences_scores(paragraph_sentence_encodings, query_encoding, processing_progress_bar,total_count):
sentence_scores = []
for index, paragraph_sentence_encoding in enumerate(paragraph_sentence_encodings):
progress_percentage = index / (total_count - 1)
processing_progress_bar.progress(progress_percentage)
sentence_similarities = []
for sentence_encoding in paragraph_sentence_encoding[1]:
if sentence_encoding:
similarity = cosine_similarity(query_encoding, sentence_encoding[1])[0][0]
combined_score, similarity_score, commonality_score = add_commonality_to_similarity_score(similarity,
sentence_encoding[0],
query)
sentence_similarities.append((combined_score, sentence_encoding[0], commonality_score))
sentence_scores.append((combined_score, sentence_encoding[0]))
sentence_similarities.sort(reverse=True, key=lambda x: x[0])
# print(sentence_similarities)
if len(sentence_similarities) >= 3:
top_three_avg_similarity = np.mean([s[0] for s in sentence_similarities[:3]])
top_three_avg_commonality = np.mean([s[2] for s in sentence_similarities[:3]])
top_three_sentences = sentence_similarities[:3]
elif sentence_similarities:
top_three_avg_similarity = np.mean([s[0] for s in sentence_similarities])
top_three_avg_commonality = np.mean([s[2] for s in sentence_similarities])
top_three_sentences = sentence_similarities
else:
top_three_avg_similarity = 0
top_three_avg_commonality = 0
top_three_sentences = []
# print(f"top_three_sentences={top_three_sentences}")
# top_three_texts = [s[1] for s in top_three_sentences]
# remaining_texts = [s[0] for s in paragraph_sentence_encoding[1] if s and s[0] not in top_three_texts]
# reordered_paragraph = top_three_texts + remaining_texts
#
# original_paragraph = ' '.join([s[0] for s in paragraph_sentence_encoding[1] if s])
# modified_paragraph = ' '.join(reordered_paragraph)
paragraph_scores.append(
(top_three_avg_similarity, top_three_avg_commonality,
{'top_three_sentences': top_three_sentences, 'original_text': paragraph_sentence_encoding[0]})
)
sentence_scores = sorted(sentence_scores, key=lambda x: x[0], reverse=True)
if 'paragraph_sentence_encodings' in st.session_state:
query = st.text_input("Enter your query")
if query:
if 'prev_query' not in st.session_state or st.session_state.prev_query != query:
st.session_state.prev_query = query
st.session_state.premise = query
query_encoding = encode_sentence(query)
paragraph_scores = []
total_count = len(st.session_state.paragraph_sentence_encodings)
processing_progress_bar = st.progress(0)
sentence_scores = find_sentences_scores(
st.session_state.paragraph_sentence_encodings, query_encoding, processing_progress_bar,total_count)
st.session_state.paragraph_scores = sorted(paragraph_scores, key=lambda x: x[0], reverse=True)
if 'paragraph_scores' in st.session_state:
st.write("Top scored paragraphs and their scores:")
for i, (similarity_score, commonality_score, paragraph) in enumerate(
st.session_state.paragraph_scores[:5]):
#st.write("top_three_sentences: ", paragraph['top_three_sentences'])
for top_sentence in paragraph['top_three_sentences']:
st.write("hyppthesis: ", top_sentence[1])
st.write(contradiction_detection(st.session_state.premise,top_sentence[1]))
#print(top_sentence[1])
# st.write(f"Similarity Score: {similarity_score}, Commonality Score: {commonality_score}")
# st.write("top_three_sentences: ", paragraph['top_three_sentences'])
st.write("Original Paragraph: ", paragraph['original_text'])
#A Member will be considered Actively at Work if he or she is able and available for active performance of all of his or her regular duties
# st.write("Modified Paragraph: ", paragraph['modified_text'])
|