ChancesYuan
commited on
Commit
·
06a8327
1
Parent(s):
3124969
Upload 12 files
Browse files- .gitattributes +1 -0
- app.py +254 -11
- dataset/fb15k237/edit_test.jsonl +0 -0
- dataset/fb15k237/entity2text.txt +0 -0
- dataset/fb15k237/entity2textlong.txt +3 -0
- dataset/fb15k237/relation2text.txt +0 -0
- dataset/fb15k237/relations.txt +237 -0
- requirement.txt +5 -0
- src/__pycache__/modeling_bert.cpython-38.pyc +0 -0
- src/__pycache__/one_shot_learner.cpython-38.pyc +0 -0
- src/modeling_bert.py +1338 -0
- src/models/__pycache__/one_shot_learner.cpython-38.pyc +0 -0
- src/models/one_shot_learner.py +157 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
dataset/fb15k237/entity2textlong.txt filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -1,17 +1,261 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
def add_process(title, context, img):
|
7 |
-
return f"Title:{title}\nContext:{context}\n...{img}", f"Title:{title}\nContext:{context}\n...{img}"
|
8 |
|
9 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
|
|
10 |
gr.Markdown("# KGE Editing")
|
11 |
|
12 |
# 多个tab
|
13 |
with gr.Tabs():
|
14 |
-
|
15 |
with gr.TabItem("E-FB15k237"):
|
16 |
with gr.Row():
|
17 |
with gr.Column():
|
@@ -25,7 +269,7 @@ with gr.Blocks() as demo:
|
|
25 |
edit_output = gr.Textbox(label="After Edit", lines=3, placeholder="")
|
26 |
|
27 |
gr.Examples(
|
28 |
-
examples=[["[MASK]
|
29 |
inputs=[edit_input, alter_label],
|
30 |
outputs=[origin_output, edit_output],
|
31 |
fn=edit_process,
|
@@ -37,7 +281,7 @@ with gr.Blocks() as demo:
|
|
37 |
with gr.Column():
|
38 |
add_input = gr.Textbox(label="Input", lines=1, placeholder="New triple input")
|
39 |
|
40 |
-
|
41 |
add_button = gr.Button("Add")
|
42 |
|
43 |
with gr.Column():
|
@@ -45,15 +289,14 @@ with gr.Blocks() as demo:
|
|
45 |
add_output = gr.Textbox(label="Add Results", lines=3, placeholder="")
|
46 |
|
47 |
gr.Examples(
|
48 |
-
examples=[["
|
49 |
-
inputs=[add_input,
|
50 |
outputs=[add_origin_output, add_output],
|
51 |
fn=add_process,
|
52 |
cache_examples=True,
|
53 |
)
|
54 |
|
55 |
-
# origin_button.click(fn=origin_preditcion, inputs=[input, alter_label], outputs=origin_output)
|
56 |
edit_button.click(fn=edit_process, inputs=[edit_input, alter_label], outputs=[origin_output, edit_output])
|
57 |
-
add_button.click(fn=add_process, inputs=[add_input,
|
58 |
|
59 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from collections import defaultdict
|
3 |
+
from transformers import BertTokenizer, BertForMaskedLM
|
4 |
+
import jsonlines
|
5 |
+
import torch
|
6 |
+
from src.modeling_bert import EXBertForMaskedLM
|
7 |
+
from higher.patch import monkeypatch as make_functional
|
8 |
+
# from src.models.one_shot_learner import OneShotLearner
|
9 |
|
10 |
+
### load KGE model
|
11 |
+
edit_origin_model = BertForMaskedLM.from_pretrained(pretrained_model_name_or_path="zjunlp/KGEditor", subfolder="E-FB15k237")
|
12 |
+
edit_ex_model = EXBertForMaskedLM.from_pretrained(pretrained_model_name_or_path="zjunlp/KGEditor", subfolder="E-FB15k237")
|
13 |
+
|
14 |
+
edit_learner = torch.load("./learner_checkpoint/edit/learner_params.pt", map_location=torch.device('cpu'))
|
15 |
+
add_learner = torch.load("./learner_checkpoint/add/learner_params.pt", map_location=torch.device('cpu'))
|
16 |
+
|
17 |
+
add_origin_model = BertForMaskedLM.from_pretrained(pretrained_model_name_or_path="zjunlp/KGEditor", subfolder="A-FB15k237")
|
18 |
+
add_ex_model = EXBertForMaskedLM.from_pretrained(pretrained_model_name_or_path="zjunlp/KGEditor", subfolder="A-FB15k237")
|
19 |
+
|
20 |
+
### init inputs
|
21 |
+
ent_name2id = defaultdict(str)
|
22 |
+
id2ent_name = defaultdict(str)
|
23 |
+
rel_name2id = defaultdict(str)
|
24 |
+
id2ent_text = defaultdict(str)
|
25 |
+
id2rel_text = defaultdict(str)
|
26 |
+
corrupt_triple = defaultdict(list)
|
27 |
+
|
28 |
+
### init tokenizer
|
29 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
30 |
+
add_tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path='zjunlp/KGEditor', subfolder="E-FB15k237")
|
31 |
+
|
32 |
+
def init_triple_input():
|
33 |
+
global ent2token
|
34 |
+
global ent2id
|
35 |
+
global id2ent
|
36 |
+
global rel2token
|
37 |
+
|
38 |
+
with open("./dataset/fb15k237/relations.txt", "r") as f:
|
39 |
+
lines = f.readlines()
|
40 |
+
relations = []
|
41 |
+
for line in lines:
|
42 |
+
relations.append(line.strip().split('\t')[0])
|
43 |
+
|
44 |
+
rel2token = {ent: f"[RELATION_{i}]" for i, ent in enumerate(relations)}
|
45 |
+
|
46 |
+
with open("./dataset/fb15k237/entity2text.txt", "r") as f:
|
47 |
+
for line in f.readlines():
|
48 |
+
id, name = line.rstrip('\n').split('\t')
|
49 |
+
ent_name2id[name] = id
|
50 |
+
id2ent_name[id] = name
|
51 |
+
|
52 |
+
with open("./dataset/fb15k237/relation2text.txt", "r") as f:
|
53 |
+
for line in f.readlines():
|
54 |
+
id, name = line.rstrip('\n').split('\t')
|
55 |
+
rel_name2id[name] = id
|
56 |
+
id2rel_text[id] = name
|
57 |
+
|
58 |
+
with open("./dataset/fb15k237/entity2textlong.txt", "r") as f:
|
59 |
+
for line in f.readlines():
|
60 |
+
id, text = line.rstrip('\n').split('\t')
|
61 |
+
id2ent_text[id] = text.replace("\\n", " ").replace("\\", "")
|
62 |
+
|
63 |
+
entities = list(id2ent_text.keys())
|
64 |
+
ent2token = {ent: f"[ENTITY_{i}]" for i, ent in enumerate(entities)}
|
65 |
+
ent2id = {ent: i for i, ent in enumerate(entities)}
|
66 |
+
id2ent = {i: ent for i, ent in enumerate(entities)}
|
67 |
+
|
68 |
+
with jsonlines.open("./dataset/fb15k237/edit_test.jsonl") as f:
|
69 |
+
lines = []
|
70 |
+
for d in f:
|
71 |
+
corrupt_triple[" ".join(d["ori"])] = d["cor"]
|
72 |
+
|
73 |
+
def solve(triple, alter_label, edit_task):
|
74 |
+
h, r, t = triple.split("|")
|
75 |
+
if h == "[MASK]":
|
76 |
+
text_a = "[MASK]"
|
77 |
+
text_b = id2rel_text[r] + " " + rel2token[r]
|
78 |
+
text_c = ent2token[ent_name2id[t]] + " " + id2ent_text[ent_name2id[t]]
|
79 |
+
origin_label = corrupt_triple[" ".join([ent_name2id[alter_label], r, ent_name2id[t]])][0] if edit_task else ent_name2id[alter_label]
|
80 |
+
else:
|
81 |
+
text_a = ent2token[ent_name2id[h]]
|
82 |
+
# text_b = id2rel_text[r] + "[PAD]"
|
83 |
+
text_b = id2rel_text[r] + " " + rel2token[r]
|
84 |
+
text_c = "[MASK]" + " " + id2ent_text[ent_name2id[h]]
|
85 |
+
origin_label = corrupt_triple[" ".join([ent_name2id[h], r, ent_name2id[alter_label]])][2] if edit_task else ent_name2id[alter_label]
|
86 |
+
|
87 |
+
if text_a == "[MASK]":
|
88 |
+
input_text_a = tokenizer.sep_token.join(["[MASK]", id2rel_text[r] + "[PAD]"])
|
89 |
+
input_text_b = "[PAD]" + " " + id2ent_text[ent_name2id[t]]
|
90 |
+
else:
|
91 |
+
input_text_a = "[PAD] "
|
92 |
+
input_text_b = tokenizer.sep_token.join([id2rel_text[r] + "[PAD]", "[MASK]" + " " + id2ent_text[ent_name2id[h]]])
|
93 |
+
|
94 |
+
cond_inputs_text = "{} >> {} || {}".format(
|
95 |
+
add_tokenizer.added_tokens_decoder[ent2id[origin_label] + len(tokenizer)],
|
96 |
+
add_tokenizer.added_tokens_decoder[ent2id[ent_name2id[alter_label]] + len(tokenizer)],
|
97 |
+
input_text_a + input_text_b
|
98 |
+
)
|
99 |
+
|
100 |
+
inputs = tokenizer(
|
101 |
+
f"{text_a} [SEP] {text_b} [SEP] {text_c}",
|
102 |
+
truncation="longest_first",
|
103 |
+
max_length=64,
|
104 |
+
padding="longest",
|
105 |
+
add_special_tokens=True,
|
106 |
+
)
|
107 |
+
|
108 |
+
edit_inputs = tokenizer(
|
109 |
+
input_text_a,
|
110 |
+
input_text_b,
|
111 |
+
truncation="longest_first",
|
112 |
+
max_length=64,
|
113 |
+
padding="longest",
|
114 |
+
add_special_tokens=True,
|
115 |
+
)
|
116 |
+
|
117 |
+
cond_inputs = tokenizer(
|
118 |
+
cond_inputs_text,
|
119 |
+
truncation=True,
|
120 |
+
max_length=64,
|
121 |
+
padding="max_length",
|
122 |
+
add_special_tokens=True,
|
123 |
+
)
|
124 |
+
|
125 |
+
inputs = {
|
126 |
+
"input_ids": torch.tensor(inputs["input_ids"]).unsqueeze(dim=0),
|
127 |
+
"attention_mask": torch.tensor(inputs["attention_mask"]).unsqueeze(dim=0),
|
128 |
+
"token_type_ids": torch.tensor(inputs["token_type_ids"]).unsqueeze(dim=0)
|
129 |
+
}
|
130 |
+
|
131 |
+
edit_inputs = {
|
132 |
+
"input_ids": torch.tensor(edit_inputs["input_ids"]).unsqueeze(dim=0),
|
133 |
+
"attention_mask": torch.tensor(edit_inputs["attention_mask"]).unsqueeze(dim=0),
|
134 |
+
"token_type_ids": torch.tensor(edit_inputs["token_type_ids"]).unsqueeze(dim=0)
|
135 |
+
}
|
136 |
+
|
137 |
+
cond_inputs = {
|
138 |
+
"input_ids": torch.tensor(cond_inputs["input_ids"]).unsqueeze(dim=0),
|
139 |
+
"attention_mask": torch.tensor(cond_inputs["attention_mask"]).unsqueeze(dim=0),
|
140 |
+
"token_type_ids": torch.tensor(cond_inputs["token_type_ids"]).unsqueeze(dim=0)
|
141 |
+
}
|
142 |
+
|
143 |
+
return inputs, cond_inputs, edit_inputs
|
144 |
+
|
145 |
+
def get_logits_orig_params_dict(inputs, cond_inputs, alter_label, ex_model, learner):
|
146 |
+
with torch.enable_grad():
|
147 |
+
logits = ex_model.eval()(
|
148 |
+
input_ids=inputs["input_ids"],
|
149 |
+
attention_mask=inputs["attention_mask"],
|
150 |
+
).logits
|
151 |
+
# print(logits.shape)
|
152 |
+
# logits_orig, logit_for_grad, _ = logits.split([
|
153 |
+
# len(inputs["input_ids"]) - 1,
|
154 |
+
# 1,
|
155 |
+
# 0,
|
156 |
+
# ])
|
157 |
+
input_ids = inputs['input_ids']
|
158 |
+
_, mask_idx = (input_ids == tokenizer.mask_token_id).nonzero(as_tuple=True)
|
159 |
+
mask_logits = logits[:, mask_idx, 30522:45473].squeeze(dim=0)
|
160 |
+
|
161 |
+
grads = torch.autograd.grad(
|
162 |
+
# cross_entropy
|
163 |
+
torch.nn.functional.cross_entropy(
|
164 |
+
mask_logits[-1:, :],
|
165 |
+
torch.tensor([alter_label]),
|
166 |
+
reduction="none",
|
167 |
+
).mean(-1),
|
168 |
+
ex_model.parameters(),
|
169 |
+
)
|
170 |
+
|
171 |
+
grads = {
|
172 |
+
name: grad
|
173 |
+
for (name, _), grad in zip(ex_model.named_parameters(), grads)
|
174 |
+
}
|
175 |
+
|
176 |
+
# cond_inputs里面有pad
|
177 |
+
params_dict = learner(
|
178 |
+
cond_inputs["input_ids"][-1:],
|
179 |
+
cond_inputs["attention_mask"][-1:],
|
180 |
+
grads=grads,
|
181 |
+
)
|
182 |
+
|
183 |
+
return params_dict
|
184 |
+
|
185 |
+
def edit_process(edit_input, alter_label):
|
186 |
+
inputs, cond_inputs, edit_inputs = solve(edit_input, alter_label, edit_task=True)
|
187 |
+
|
188 |
+
_, mask_idx = (inputs["input_ids"] == tokenizer.mask_token_id).nonzero(as_tuple=True)
|
189 |
+
logits = edit_origin_model(**inputs).logits[:, :, 30522:45473].squeeze()
|
190 |
+
logits = logits[mask_idx, :]
|
191 |
+
|
192 |
+
### origin output
|
193 |
+
_, origin_entity_order = torch.sort(logits, dim=1, descending=True)
|
194 |
+
origin_entity_order = origin_entity_order.squeeze(dim=0)
|
195 |
+
origin_top3 = [id2ent_name[id2ent[origin_entity_order[i].item()]] for i in range(3)]
|
196 |
+
|
197 |
+
### edit output
|
198 |
+
fmodel = make_functional(edit_ex_model).eval()
|
199 |
+
params_dict = get_logits_orig_params_dict(inputs, cond_inputs, ent2id[ent_name2id[alter_label]], edit_ex_model, edit_learner)
|
200 |
+
edit_logits = fmodel(
|
201 |
+
input_ids=inputs["input_ids"],
|
202 |
+
attention_mask=inputs["attention_mask"],
|
203 |
+
# add delta theta
|
204 |
+
params=[
|
205 |
+
params_dict.get(n, 0) + p
|
206 |
+
for n, p in edit_ex_model.named_parameters()
|
207 |
+
],
|
208 |
+
).logits[:, :, 30522:45473].squeeze()
|
209 |
+
|
210 |
+
edit_logits = edit_logits[mask_idx, :]
|
211 |
+
_, edit_entity_order = torch.sort(edit_logits, dim=1, descending=True)
|
212 |
+
edit_entity_order = edit_entity_order.squeeze(dim=0)
|
213 |
+
edit_top3 = [id2ent_name[id2ent[edit_entity_order[i].item()]] for i in range(3)]
|
214 |
+
|
215 |
+
return "\n".join(origin_top3), "\n".join(edit_top3)
|
216 |
+
|
217 |
+
def add_process(edit_input, alter_label):
|
218 |
+
inputs, cond_inputs, add_inputs = solve(edit_input, alter_label, edit_task=False)
|
219 |
+
|
220 |
+
_, mask_idx = (inputs["input_ids"] == tokenizer.mask_token_id).nonzero(as_tuple=True)
|
221 |
+
logits = add_origin_model(**inputs).logits[:, :, 30522:45473].squeeze()
|
222 |
+
logits = logits[mask_idx, :]
|
223 |
+
|
224 |
+
### origin output
|
225 |
+
_, origin_entity_order = torch.sort(logits, dim=1, descending=True)
|
226 |
+
origin_entity_order = origin_entity_order.squeeze(dim=0)
|
227 |
+
origin_top3 = [id2ent_name[id2ent[origin_entity_order[i].item()]] for i in range(3)]
|
228 |
+
|
229 |
+
### add output
|
230 |
+
fmodel = make_functional(add_ex_model).eval()
|
231 |
+
params_dict = get_logits_orig_params_dict(inputs, cond_inputs, ent2id[ent_name2id[alter_label]], add_ex_model, add_learner)
|
232 |
+
add_logits = fmodel(
|
233 |
+
input_ids=inputs["input_ids"],
|
234 |
+
attention_mask=inputs["attention_mask"],
|
235 |
+
# add delta theta
|
236 |
+
params=[
|
237 |
+
params_dict.get(n, 0) + p
|
238 |
+
for n, p in add_ex_model.named_parameters()
|
239 |
+
],
|
240 |
+
).logits[:, :, 30522:45473].squeeze()
|
241 |
+
|
242 |
+
add_logits = add_logits[mask_idx, :]
|
243 |
+
_, add_entity_order = torch.sort(add_logits, dim=1, descending=True)
|
244 |
+
add_entity_order = add_entity_order.squeeze(dim=0)
|
245 |
+
add_top3 = [id2ent_name[id2ent[add_entity_order[i].item()]] for i in range(3)]
|
246 |
+
|
247 |
+
return "\n".join(origin_top3), "\n".join(add_top3)
|
248 |
|
|
|
|
|
249 |
|
250 |
with gr.Blocks() as demo:
|
251 |
+
init_triple_input()
|
252 |
+
### example
|
253 |
+
# edit_process("[MASK]|/people/person/profession|Jack Black", "Kellie Martin")
|
254 |
+
add_process("Red Skelton|/people/person/places_lived./people/place_lived/location|[MASK]", "Palm Springs")
|
255 |
gr.Markdown("# KGE Editing")
|
256 |
|
257 |
# 多个tab
|
258 |
with gr.Tabs():
|
|
|
259 |
with gr.TabItem("E-FB15k237"):
|
260 |
with gr.Row():
|
261 |
with gr.Column():
|
|
|
269 |
edit_output = gr.Textbox(label="After Edit", lines=3, placeholder="")
|
270 |
|
271 |
gr.Examples(
|
272 |
+
examples=[["[MASK]|/people/person/profession|Jack Black", "Kellie Martin"], ["Red Skelton|/people/person/places_lived./people/place_lived/location|[MASK]", "Palm Springs"]],
|
273 |
inputs=[edit_input, alter_label],
|
274 |
outputs=[origin_output, edit_output],
|
275 |
fn=edit_process,
|
|
|
281 |
with gr.Column():
|
282 |
add_input = gr.Textbox(label="Input", lines=1, placeholder="New triple input")
|
283 |
|
284 |
+
inductive_entity = gr.Textbox(label="Inductive Entity", lines=1, placeholder="Entity Name")
|
285 |
add_button = gr.Button("Add")
|
286 |
|
287 |
with gr.Column():
|
|
|
289 |
add_output = gr.Textbox(label="Add Results", lines=3, placeholder="")
|
290 |
|
291 |
gr.Examples(
|
292 |
+
examples=[["Jane Wyman|/people/person/places_lived./people/place_lived/location|[MASK]", "Palm Springs"], ["Red Skelton|/people/person/places_lived./people/place_lived/location|[MASK]", "Palm Springs"]],
|
293 |
+
inputs=[add_input, inductive_entity],
|
294 |
outputs=[add_origin_output, add_output],
|
295 |
fn=add_process,
|
296 |
cache_examples=True,
|
297 |
)
|
298 |
|
|
|
299 |
edit_button.click(fn=edit_process, inputs=[edit_input, alter_label], outputs=[origin_output, edit_output])
|
300 |
+
add_button.click(fn=add_process, inputs=[add_input, inductive_entity], outputs=[add_origin_output, add_output])
|
301 |
|
302 |
demo.launch()
|
dataset/fb15k237/edit_test.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset/fb15k237/entity2text.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset/fb15k237/entity2textlong.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c6028d81296e311076eed7cfbf5dc3c4174b68394639148e32212ad49aa6c7f
|
3 |
+
size 13063994
|
dataset/fb15k237/relation2text.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
dataset/fb15k237/relations.txt
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/soccer/football_team/current_roster./soccer/football_roster_position/position
|
2 |
+
/music/artist/origin
|
3 |
+
/ice_hockey/hockey_team/current_roster./sports/sports_team_roster/position
|
4 |
+
/food/food/nutrients./food/nutrition_fact/nutrient
|
5 |
+
/film/actor/film./film/performance/film
|
6 |
+
/award/award_nominee/award_nominations./award/award_nomination/nominated_for
|
7 |
+
/government/political_party/politicians_in_this_party./government/political_party_tenure/politician
|
8 |
+
/base/schemastaging/person_extra/net_worth./measurement_unit/dated_money_value/currency
|
9 |
+
/people/deceased_person/place_of_death
|
10 |
+
/people/person/profession
|
11 |
+
/location/administrative_division/first_level_division_of
|
12 |
+
/base/marchmadness/ncaa_basketball_tournament/seeds./base/marchmadness/ncaa_tournament_seed/team
|
13 |
+
/education/university/international_tuition./measurement_unit/dated_money_value/currency
|
14 |
+
/location/us_county/county_seat
|
15 |
+
/location/location/partially_contains
|
16 |
+
/tv/tv_program/program_creator
|
17 |
+
/film/film/music
|
18 |
+
/tv/tv_program/languages
|
19 |
+
/common/topic/webpage./common/webpage/category
|
20 |
+
/user/tsegaran/random/taxonomy_subject/entry./user/tsegaran/random/taxonomy_entry/taxonomy
|
21 |
+
/education/field_of_study/students_majoring./education/education/major_field_of_study
|
22 |
+
/business/business_operation/assets./measurement_unit/dated_money_value/currency
|
23 |
+
/film/film_set_designer/film_sets_designed
|
24 |
+
/dataworld/gardening_hint/split_to
|
25 |
+
/people/person/languages
|
26 |
+
/business/job_title/people_with_this_title./business/employment_tenure/company
|
27 |
+
/location/country/form_of_government
|
28 |
+
/base/schemastaging/organization_extra/phone_number./base/schemastaging/phone_sandbox/service_language
|
29 |
+
/people/person/place_of_birth
|
30 |
+
/sports/sports_team/colors
|
31 |
+
/education/educational_institution/school_type
|
32 |
+
/award/award_category/winners./award/award_honor/award_winner
|
33 |
+
/organization/organization/headquarters./location/mailing_address/citytown
|
34 |
+
/education/educational_degree/people_with_this_degree./education/education/student
|
35 |
+
/government/legislative_session/members./government/government_position_held/legislative_sessions
|
36 |
+
/film/film/distributors./film/film_film_distributor_relationship/film_distribution_medium
|
37 |
+
/education/educational_degree/people_with_this_degree./education/education/major_field_of_study
|
38 |
+
/location/hud_county_place/county
|
39 |
+
/location/administrative_division/country
|
40 |
+
/film/film/film_production_design_by
|
41 |
+
/award/award_winning_work/awards_won./award/award_honor/award
|
42 |
+
/organization/organization/headquarters./location/mailing_address/state_province_region
|
43 |
+
/base/schemastaging/organization_extra/phone_number./base/schemastaging/phone_sandbox/contact_category
|
44 |
+
/tv/tv_program/country_of_origin
|
45 |
+
/olympics/olympic_participating_country/medals_won./olympics/olympic_medal_honor/medal
|
46 |
+
/location/country/second_level_divisions
|
47 |
+
/award/award_ceremony/awards_presented./award/award_honor/honored_for
|
48 |
+
/organization/organization_member/member_of./organization/organization_membership/organization
|
49 |
+
/education/educational_institution/campuses
|
50 |
+
/music/artist/contribution./music/recording_contribution/performance_role
|
51 |
+
/award/ranked_item/appears_in_ranked_lists./award/ranking/list
|
52 |
+
/people/person/religion
|
53 |
+
/travel/travel_destination/climate./travel/travel_destination_monthly_climate/month
|
54 |
+
/film/special_film_performance_type/film_performance_type./film/performance/film
|
55 |
+
/award/award_nominee/award_nominations./award/award_nomination/award
|
56 |
+
/location/statistical_region/religions./location/religion_percentage/religion
|
57 |
+
/sports/sports_league_draft/picks./sports/sports_league_draft_pick/school
|
58 |
+
/film/film/distributors./film/film_film_distributor_relationship/region
|
59 |
+
/government/politician/government_positions_held./government/government_position_held/legislative_sessions
|
60 |
+
/organization/role/leaders./organization/leadership/organization
|
61 |
+
/tv/tv_network/programs./tv/tv_network_duration/program
|
62 |
+
/soccer/football_team/current_roster./sports/sports_team_roster/position
|
63 |
+
/music/instrument/instrumentalists
|
64 |
+
/business/business_operation/operating_income./measurement_unit/dated_money_value/currency
|
65 |
+
/people/cause_of_death/people
|
66 |
+
/film/film/film_art_direction_by
|
67 |
+
/people/person/sibling_s./people/sibling_relationship/sibling
|
68 |
+
/film/film/cinematography
|
69 |
+
/film/actor/dubbing_performances./film/dubbing_performance/language
|
70 |
+
/base/biblioness/bibs_location/state
|
71 |
+
/base/petbreeds/city_with_dogs/top_breeds./base/petbreeds/dog_city_relationship/dog_breed
|
72 |
+
/people/person/gender
|
73 |
+
/education/field_of_study/students_majoring./education/education/student
|
74 |
+
/base/popstra/celebrity/dated./base/popstra/dated/participant
|
75 |
+
/sports/sports_team/roster./american_football/football_roster_position/position
|
76 |
+
/award/award_winner/awards_won./award/award_honor/award_winner
|
77 |
+
/olympics/olympic_participating_country/medals_won./olympics/olympic_medal_honor/olympics
|
78 |
+
/film/director/film
|
79 |
+
/tv/tv_producer/programs_produced./tv/tv_producer_term/program
|
80 |
+
/film/film_distributor/films_distributed./film/film_film_distributor_relationship/film
|
81 |
+
/olympics/olympic_games/sports
|
82 |
+
/music/record_label/artist
|
83 |
+
/education/university/local_tuition./measurement_unit/dated_money_value/currency
|
84 |
+
/film/film/story_by
|
85 |
+
/people/person/spouse_s./people/marriage/spouse
|
86 |
+
/sports/sports_league/teams./sports/sports_league_participation/team
|
87 |
+
/people/profession/specialization_of
|
88 |
+
/base/americancomedy/celebrity_impressionist/celebrities_impersonated
|
89 |
+
/tv/tv_program/genre
|
90 |
+
/award/award_category/nominees./award/award_nomination/nominated_for
|
91 |
+
/language/human_language/countries_spoken_in
|
92 |
+
/organization/organization/headquarters./location/mailing_address/country
|
93 |
+
/location/statistical_region/gdp_real./measurement_unit/adjusted_money_value/adjustment_currency
|
94 |
+
/education/university/fraternities_and_sororities
|
95 |
+
/award/award_nominee/award_nominations./award/award_nomination/award_nominee
|
96 |
+
/military/military_combatant/military_conflicts./military/military_combatant_group/combatants
|
97 |
+
/award/award_nominated_work/award_nominations./award/award_nomination/nominated_for
|
98 |
+
/location/location/time_zones
|
99 |
+
/film/film/dubbing_performances./film/dubbing_performance/actor
|
100 |
+
/film/film_subject/films
|
101 |
+
/education/educational_degree/people_with_this_degree./education/education/institution
|
102 |
+
/education/educational_institution/colors
|
103 |
+
/award/award_category/category_of
|
104 |
+
/tv/tv_personality/tv_regular_appearances./tv/tv_regular_personal_appearance/program
|
105 |
+
/film/film/language
|
106 |
+
/music/group_member/membership./music/group_membership/group
|
107 |
+
/business/business_operation/revenue./measurement_unit/dated_money_value/currency
|
108 |
+
/film/film/film_festivals
|
109 |
+
/film/actor/film./film/performance/special_performance_type
|
110 |
+
/organization/non_profit_organization/registered_with./organization/non_profit_registration/registering_agency
|
111 |
+
/government/politician/government_positions_held./government/government_position_held/jurisdiction_of_office
|
112 |
+
/base/aareas/schema/administrative_area/administrative_parent
|
113 |
+
/award/award_winning_work/awards_won./award/award_honor/award_winner
|
114 |
+
/organization/organization/place_founded
|
115 |
+
/soccer/football_player/current_team./sports/sports_team_roster/team
|
116 |
+
/government/politician/government_positions_held./government/government_position_held/basic_title
|
117 |
+
/music/artist/track_contributions./music/track_contribution/role
|
118 |
+
/base/localfood/seasonal_month/produce_available./base/localfood/produce_availability/seasonal_months
|
119 |
+
/celebrities/celebrity/celebrity_friends./celebrities/friendship/friend
|
120 |
+
/sports/professional_sports_team/draft_picks./sports/sports_league_draft_pick/school
|
121 |
+
/award/hall_of_fame/inductees./award/hall_of_fame_induction/inductee
|
122 |
+
/influence/influence_node/peers./influence/peer_relationship/peers
|
123 |
+
/medicine/disease/risk_factors
|
124 |
+
/broadcast/content/artist
|
125 |
+
/film/film/estimated_budget./measurement_unit/dated_money_value/currency
|
126 |
+
/military/military_conflict/combatants./military/military_combatant_group/combatants
|
127 |
+
/location/capital_of_administrative_division/capital_of./location/administrative_division_capital_relationship/administrative_division
|
128 |
+
/tv/tv_program/regular_cast./tv/regular_tv_appearance/actor
|
129 |
+
/people/deceased_person/place_of_burial
|
130 |
+
/location/location/adjoin_s./location/adjoining_relationship/adjoins
|
131 |
+
/music/group_member/membership./music/group_membership/role
|
132 |
+
/award/award_ceremony/awards_presented./award/award_honor/award_winner
|
133 |
+
/film/film/prequel
|
134 |
+
/film/film/produced_by
|
135 |
+
/tv/tv_program/tv_producer./tv/tv_producer_term/producer_type
|
136 |
+
/sports/sports_position/players./sports/sports_team_roster/team
|
137 |
+
/olympics/olympic_games/participating_countries
|
138 |
+
/music/genre/parent_genre
|
139 |
+
/tv/tv_writer/tv_programs./tv/tv_program_writer_relationship/tv_program
|
140 |
+
/music/genre/artists
|
141 |
+
/film/film/genre
|
142 |
+
/people/person/employment_history./business/employment_tenure/company
|
143 |
+
/education/university/domestic_tuition./measurement_unit/dated_money_value/currency
|
144 |
+
/people/person/nationality
|
145 |
+
/location/country/capital
|
146 |
+
/location/statistical_region/gni_per_capita_in_ppp_dollars./measurement_unit/dated_money_value/currency
|
147 |
+
/base/aareas/schema/administrative_area/capital
|
148 |
+
/business/business_operation/industry
|
149 |
+
/location/hud_foreclosure_area/estimated_number_of_mortgages./measurement_unit/dated_integer/source
|
150 |
+
/film/film/other_crew./film/film_crew_gig/crewmember
|
151 |
+
/base/popstra/location/vacationers./base/popstra/vacation_choice/vacationer
|
152 |
+
/film/film/film_format
|
153 |
+
/medicine/disease/notable_people_with_this_condition
|
154 |
+
/film/film/costume_design_by
|
155 |
+
/government/government_office_category/officeholders./government/government_position_held/jurisdiction_of_office
|
156 |
+
/location/statistical_region/gdp_nominal./measurement_unit/dated_money_value/currency
|
157 |
+
/sports/sports_team/roster./baseball/baseball_roster_position/position
|
158 |
+
/award/award_winning_work/awards_won./award/award_honor/honored_for
|
159 |
+
/olympics/olympic_sport/athletes./olympics/olympic_athlete_affiliation/olympics
|
160 |
+
/celebrities/celebrity/sexual_relationships./celebrities/romantic_relationship/celebrity
|
161 |
+
/people/marriage_union_type/unions_of_this_type./people/marriage/location_of_ceremony
|
162 |
+
/organization/organization/child./organization/organization_relationship/child
|
163 |
+
/organization/organization_founder/organizations_founded
|
164 |
+
/sports/sports_team/sport
|
165 |
+
/people/ethnicity/geographic_distribution
|
166 |
+
/location/statistical_region/places_exported_to./location/imports_and_exports/exported_to
|
167 |
+
/location/country/official_language
|
168 |
+
/film/film/production_companies
|
169 |
+
/user/jg/default_domain/olympic_games/sports
|
170 |
+
/time/event/locations
|
171 |
+
/people/person/spouse_s./people/marriage/type_of_union
|
172 |
+
/government/governmental_body/members./government/government_position_held/legislative_sessions
|
173 |
+
/media_common/netflix_genre/titles
|
174 |
+
/user/alexander/philosophy/philosopher/interests
|
175 |
+
/film/film/runtime./film/film_cut/film_release_region
|
176 |
+
/education/educational_institution/students_graduates./education/education/student
|
177 |
+
/base/eating/practicer_of_diet/diet
|
178 |
+
/tv/non_character_role/tv_regular_personal_appearances./tv/tv_regular_personal_appearance/person
|
179 |
+
/sports/sports_position/players./sports/sports_team_roster/position
|
180 |
+
/sports/professional_sports_team/draft_picks./sports/sports_league_draft_pick/draft
|
181 |
+
/medicine/symptom/symptom_of
|
182 |
+
/film/person_or_entity_appearing_in_film/films./film/personal_film_appearance/type_of_appearance
|
183 |
+
/sports/sports_team_location/teams
|
184 |
+
/american_football/football_team/current_roster./sports/sports_team_roster/position
|
185 |
+
/people/person/places_lived./people/place_lived/location
|
186 |
+
/location/statistical_region/rent50_2./measurement_unit/dated_money_value/currency
|
187 |
+
/film/film/personal_appearances./film/personal_film_appearance/person
|
188 |
+
/music/instrument/family
|
189 |
+
/sports/sports_team/roster./basketball/basketball_roster_position/position
|
190 |
+
/base/schemastaging/organization_extra/phone_number./base/schemastaging/phone_sandbox/service_location
|
191 |
+
/film/film/release_date_s./film/film_regional_release_date/film_release_region
|
192 |
+
/award/award_category/disciplines_or_subjects
|
193 |
+
/base/popstra/celebrity/friendship./base/popstra/friendship/participant
|
194 |
+
/music/performance_role/regular_performances./music/group_membership/group
|
195 |
+
/film/film/edited_by
|
196 |
+
/base/x2010fifaworldcupsouthafrica/world_cup_squad/current_world_cup_squad./base/x2010fifaworldcupsouthafrica/current_world_cup_squad/current_club
|
197 |
+
/base/popstra/celebrity/canoodled./base/popstra/canoodled/participant
|
198 |
+
/film/film/release_date_s./film/film_regional_release_date/film_release_distribution_medium
|
199 |
+
/film/film/other_crew./film/film_crew_gig/film_crew_role
|
200 |
+
/base/popstra/celebrity/breakup./base/popstra/breakup/participant
|
201 |
+
/film/film/country
|
202 |
+
/music/performance_role/regular_performances./music/group_membership/role
|
203 |
+
/sports/sports_team/roster./american_football/football_historical_roster_position/position_s
|
204 |
+
/film/film/release_date_s./film/film_regional_release_date/film_regional_debut_venue
|
205 |
+
/time/event/instance_of_recurring_event
|
206 |
+
/olympics/olympic_participating_country/athletes./olympics/olympic_athlete_affiliation/olympics
|
207 |
+
/organization/endowed_organization/endowment./measurement_unit/dated_money_value/currency
|
208 |
+
/travel/travel_destination/how_to_get_here./travel/transportation/mode_of_transportation
|
209 |
+
/baseball/baseball_team/team_stats./baseball/baseball_team_stats/season
|
210 |
+
/award/award_category/winners./award/award_honor/ceremony
|
211 |
+
/government/legislative_session/members./government/government_position_held/district_represented
|
212 |
+
/influence/influence_node/influenced_by
|
213 |
+
/base/culturalevent/event/entity_involved
|
214 |
+
/people/ethnicity/people
|
215 |
+
/sports/sport/pro_athletes./sports/pro_sports_played/athlete
|
216 |
+
/location/statistical_region/gdp_nominal_per_capita./measurement_unit/dated_money_value/currency
|
217 |
+
/location/hud_county_place/place
|
218 |
+
/base/aareas/schema/administrative_area/administrative_area_type
|
219 |
+
/base/locations/continents/countries_within
|
220 |
+
/sports/sports_position/players./american_football/football_historical_roster_position/position_s
|
221 |
+
/people/person/spouse_s./people/marriage/location_of_ceremony
|
222 |
+
/education/educational_institution/students_graduates./education/education/major_field_of_study
|
223 |
+
/film/film/written_by
|
224 |
+
/olympics/olympic_sport/athletes./olympics/olympic_athlete_affiliation/country
|
225 |
+
/music/performance_role/guest_performances./music/recording_contribution/performance_role
|
226 |
+
/film/film/featured_film_locations
|
227 |
+
/education/educational_institution_campus/educational_institution
|
228 |
+
/sports/pro_athlete/teams./sports/sports_team_roster/team
|
229 |
+
/people/ethnicity/languages_spoken
|
230 |
+
/film/film/executive_produced_by
|
231 |
+
/tv/tv_producer/programs_produced./tv/tv_producer_term/producer_type
|
232 |
+
/location/location/contains
|
233 |
+
/base/biblioness/bibs_location/country
|
234 |
+
/user/ktrueman/default_domain/international_organization/member_states
|
235 |
+
/music/performance_role/track_performances./music/track_contribution/role
|
236 |
+
/olympics/olympic_games/medals_awarded./olympics/olympic_medal_honor/medal
|
237 |
+
/base/saturdaynightlive/snl_cast_member/seasons./base/saturdaynightlive/snl_season_tenure/cast_members
|
requirement.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
allennlp
|
2 |
+
kgeditor==1.0.0
|
3 |
+
transformers
|
4 |
+
jsonlines
|
5 |
+
higher
|
src/__pycache__/modeling_bert.cpython-38.pyc
ADDED
Binary file (39.5 kB). View file
|
|
src/__pycache__/one_shot_learner.cpython-38.pyc
ADDED
Binary file (4.19 kB). View file
|
|
src/modeling_bert.py
ADDED
@@ -0,0 +1,1338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch BERT model."""
|
17 |
+
|
18 |
+
|
19 |
+
import math
|
20 |
+
import os
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from packaging import version
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
|
30 |
+
from transformers.activations import ACT2FN
|
31 |
+
from transformers.modeling_outputs import (
|
32 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
33 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
34 |
+
CausalLMOutputWithCrossAttentions,
|
35 |
+
MaskedLMOutput,
|
36 |
+
MultipleChoiceModelOutput,
|
37 |
+
NextSentencePredictorOutput,
|
38 |
+
QuestionAnsweringModelOutput,
|
39 |
+
SequenceClassifierOutput,
|
40 |
+
TokenClassifierOutput,
|
41 |
+
)
|
42 |
+
from transformers.modeling_utils import PreTrainedModel
|
43 |
+
from transformers.pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
44 |
+
from transformers.utils import (
|
45 |
+
ModelOutput,
|
46 |
+
add_code_sample_docstrings,
|
47 |
+
add_start_docstrings,
|
48 |
+
add_start_docstrings_to_model_forward,
|
49 |
+
logging,
|
50 |
+
)
|
51 |
+
from transformers.models.bert.configuration_bert import BertConfig
|
52 |
+
from transformers.activations import ACT2FN
|
53 |
+
|
54 |
+
|
55 |
+
logger = logging.get_logger(__name__)
|
56 |
+
|
57 |
+
_CHECKPOINT_FOR_DOC = "bert-base-uncased"
|
58 |
+
_CONFIG_FOR_DOC = "BertConfig"
|
59 |
+
_TOKENIZER_FOR_DOC = "BertTokenizer"
|
60 |
+
|
61 |
+
# TokenClassification docstring
|
62 |
+
_CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "dbmdz/bert-large-cased-finetuned-conll03-english"
|
63 |
+
_TOKEN_CLASS_EXPECTED_OUTPUT = (
|
64 |
+
"['O', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC'] "
|
65 |
+
)
|
66 |
+
_TOKEN_CLASS_EXPECTED_LOSS = 0.01
|
67 |
+
|
68 |
+
# QuestionAnswering docstring
|
69 |
+
_CHECKPOINT_FOR_QA = "deepset/bert-base-cased-squad2"
|
70 |
+
_QA_EXPECTED_OUTPUT = "'a nice puppet'"
|
71 |
+
_QA_EXPECTED_LOSS = 7.41
|
72 |
+
_QA_TARGET_START_INDEX = 14
|
73 |
+
_QA_TARGET_END_INDEX = 15
|
74 |
+
|
75 |
+
# SequenceClassification docstring
|
76 |
+
_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "textattack/bert-base-uncased-yelp-polarity"
|
77 |
+
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_1'"
|
78 |
+
_SEQ_CLASS_EXPECTED_LOSS = 0.01
|
79 |
+
|
80 |
+
|
81 |
+
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
82 |
+
"bert-base-uncased",
|
83 |
+
"bert-large-uncased",
|
84 |
+
"bert-base-cased",
|
85 |
+
"bert-large-cased",
|
86 |
+
"bert-base-multilingual-uncased",
|
87 |
+
"bert-base-multilingual-cased",
|
88 |
+
"bert-base-chinese",
|
89 |
+
"bert-base-german-cased",
|
90 |
+
"bert-large-uncased-whole-word-masking",
|
91 |
+
"bert-large-cased-whole-word-masking",
|
92 |
+
"bert-large-uncased-whole-word-masking-finetuned-squad",
|
93 |
+
"bert-large-cased-whole-word-masking-finetuned-squad",
|
94 |
+
"bert-base-cased-finetuned-mrpc",
|
95 |
+
"bert-base-german-dbmdz-cased",
|
96 |
+
"bert-base-german-dbmdz-uncased",
|
97 |
+
"cl-tohoku/bert-base-japanese",
|
98 |
+
"cl-tohoku/bert-base-japanese-whole-word-masking",
|
99 |
+
"cl-tohoku/bert-base-japanese-char",
|
100 |
+
"cl-tohoku/bert-base-japanese-char-whole-word-masking",
|
101 |
+
"TurkuNLP/bert-base-finnish-cased-v1",
|
102 |
+
"TurkuNLP/bert-base-finnish-uncased-v1",
|
103 |
+
"wietsedv/bert-base-dutch-cased",
|
104 |
+
# See all BERT models at https://huggingface.co/models?filter=bert
|
105 |
+
]
|
106 |
+
|
107 |
+
|
108 |
+
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
|
109 |
+
"""Load tf checkpoints in a pytorch model."""
|
110 |
+
try:
|
111 |
+
import re
|
112 |
+
|
113 |
+
import numpy as np
|
114 |
+
import tensorflow as tf
|
115 |
+
except ImportError:
|
116 |
+
logger.error(
|
117 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
118 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
119 |
+
)
|
120 |
+
raise
|
121 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
122 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
123 |
+
# Load weights from TF model
|
124 |
+
init_vars = tf.train.list_variables(tf_path)
|
125 |
+
names = []
|
126 |
+
arrays = []
|
127 |
+
for name, shape in init_vars:
|
128 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
129 |
+
array = tf.train.load_variable(tf_path, name)
|
130 |
+
names.append(name)
|
131 |
+
arrays.append(array)
|
132 |
+
|
133 |
+
for name, array in zip(names, arrays):
|
134 |
+
name = name.split("/")
|
135 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
136 |
+
# which are not required for using pretrained model
|
137 |
+
if any(
|
138 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
139 |
+
for n in name
|
140 |
+
):
|
141 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
142 |
+
continue
|
143 |
+
pointer = model
|
144 |
+
for m_name in name:
|
145 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
146 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
147 |
+
else:
|
148 |
+
scope_names = [m_name]
|
149 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
150 |
+
pointer = getattr(pointer, "weight")
|
151 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
152 |
+
pointer = getattr(pointer, "bias")
|
153 |
+
elif scope_names[0] == "output_weights":
|
154 |
+
pointer = getattr(pointer, "weight")
|
155 |
+
elif scope_names[0] == "squad":
|
156 |
+
pointer = getattr(pointer, "classifier")
|
157 |
+
else:
|
158 |
+
try:
|
159 |
+
pointer = getattr(pointer, scope_names[0])
|
160 |
+
except AttributeError:
|
161 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
162 |
+
continue
|
163 |
+
if len(scope_names) >= 2:
|
164 |
+
num = int(scope_names[1])
|
165 |
+
pointer = pointer[num]
|
166 |
+
if m_name[-11:] == "_embeddings":
|
167 |
+
pointer = getattr(pointer, "weight")
|
168 |
+
elif m_name == "kernel":
|
169 |
+
array = np.transpose(array)
|
170 |
+
try:
|
171 |
+
if pointer.shape != array.shape:
|
172 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
173 |
+
except AssertionError as e:
|
174 |
+
e.args += (pointer.shape, array.shape)
|
175 |
+
raise
|
176 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
177 |
+
pointer.data = torch.from_numpy(array)
|
178 |
+
return model
|
179 |
+
|
180 |
+
|
181 |
+
class BertEmbeddings(nn.Module):
|
182 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
183 |
+
|
184 |
+
def __init__(self, config):
|
185 |
+
super().__init__()
|
186 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
187 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
188 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
189 |
+
|
190 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
191 |
+
# any TensorFlow checkpoint file
|
192 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
193 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
194 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
195 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
196 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
197 |
+
if version.parse(torch.__version__) > version.parse("1.6.0"):
|
198 |
+
self.register_buffer(
|
199 |
+
"token_type_ids",
|
200 |
+
torch.zeros(self.position_ids.size(), dtype=torch.long),
|
201 |
+
persistent=False,
|
202 |
+
)
|
203 |
+
|
204 |
+
def forward(
|
205 |
+
self,
|
206 |
+
input_ids: Optional[torch.LongTensor] = None,
|
207 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
208 |
+
position_ids: Optional[torch.LongTensor] = None,
|
209 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
210 |
+
past_key_values_length: int = 0,
|
211 |
+
) -> torch.Tensor:
|
212 |
+
if input_ids is not None:
|
213 |
+
input_shape = input_ids.size()
|
214 |
+
else:
|
215 |
+
input_shape = inputs_embeds.size()[:-1]
|
216 |
+
|
217 |
+
seq_length = input_shape[1]
|
218 |
+
|
219 |
+
if position_ids is None:
|
220 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
221 |
+
|
222 |
+
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
|
223 |
+
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
|
224 |
+
# issue #5664
|
225 |
+
if token_type_ids is None:
|
226 |
+
if hasattr(self, "token_type_ids"):
|
227 |
+
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
|
228 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
|
229 |
+
token_type_ids = buffered_token_type_ids_expanded
|
230 |
+
else:
|
231 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
232 |
+
|
233 |
+
if inputs_embeds is None:
|
234 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
235 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
236 |
+
|
237 |
+
embeddings = inputs_embeds + token_type_embeddings
|
238 |
+
if self.position_embedding_type == "absolute":
|
239 |
+
position_embeddings = self.position_embeddings(position_ids)
|
240 |
+
embeddings += position_embeddings
|
241 |
+
embeddings = self.LayerNorm(embeddings)
|
242 |
+
embeddings = self.dropout(embeddings)
|
243 |
+
return embeddings
|
244 |
+
|
245 |
+
|
246 |
+
class BertSelfAttention(nn.Module):
|
247 |
+
def __init__(self, config, position_embedding_type=None):
|
248 |
+
super().__init__()
|
249 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
250 |
+
raise ValueError(
|
251 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
252 |
+
f"heads ({config.num_attention_heads})"
|
253 |
+
)
|
254 |
+
|
255 |
+
self.num_attention_heads = config.num_attention_heads
|
256 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
257 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
258 |
+
|
259 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
260 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
261 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
262 |
+
|
263 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
264 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
265 |
+
config, "position_embedding_type", "absolute"
|
266 |
+
)
|
267 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
268 |
+
self.max_position_embeddings = config.max_position_embeddings
|
269 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
270 |
+
|
271 |
+
self.is_decoder = config.is_decoder
|
272 |
+
|
273 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
274 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
275 |
+
x = x.view(new_x_shape)
|
276 |
+
return x.permute(0, 2, 1, 3)
|
277 |
+
|
278 |
+
def forward(
|
279 |
+
self,
|
280 |
+
hidden_states: torch.Tensor,
|
281 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
282 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
283 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
284 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
285 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
286 |
+
output_attentions: Optional[bool] = False,
|
287 |
+
) -> Tuple[torch.Tensor]:
|
288 |
+
mixed_query_layer = self.query(hidden_states)
|
289 |
+
|
290 |
+
# If this is instantiated as a cross-attention module, the keys
|
291 |
+
# and values come from an encoder; the attention mask needs to be
|
292 |
+
# such that the encoder's padding tokens are not attended to.
|
293 |
+
is_cross_attention = encoder_hidden_states is not None
|
294 |
+
|
295 |
+
if is_cross_attention and past_key_value is not None:
|
296 |
+
# reuse k,v, cross_attentions
|
297 |
+
key_layer = past_key_value[0]
|
298 |
+
value_layer = past_key_value[1]
|
299 |
+
attention_mask = encoder_attention_mask
|
300 |
+
elif is_cross_attention:
|
301 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
302 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
303 |
+
attention_mask = encoder_attention_mask
|
304 |
+
elif past_key_value is not None:
|
305 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
306 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
307 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
308 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
309 |
+
else:
|
310 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
311 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
312 |
+
|
313 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
314 |
+
|
315 |
+
if self.is_decoder:
|
316 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
317 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
318 |
+
# key/value_states (first "if" case)
|
319 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
320 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
321 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
322 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
323 |
+
past_key_value = (key_layer, value_layer)
|
324 |
+
|
325 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
326 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
327 |
+
|
328 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
329 |
+
seq_length = hidden_states.size()[1]
|
330 |
+
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
331 |
+
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
332 |
+
distance = position_ids_l - position_ids_r
|
333 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
334 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
335 |
+
|
336 |
+
if self.position_embedding_type == "relative_key":
|
337 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
338 |
+
attention_scores = attention_scores + relative_position_scores
|
339 |
+
elif self.position_embedding_type == "relative_key_query":
|
340 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
341 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
342 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
343 |
+
|
344 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
345 |
+
if attention_mask is not None:
|
346 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
347 |
+
attention_scores = attention_scores + attention_mask
|
348 |
+
|
349 |
+
# Normalize the attention scores to probabilities.
|
350 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
351 |
+
|
352 |
+
# This is actually dropping out entire tokens to attend to, which might
|
353 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
354 |
+
attention_probs = self.dropout(attention_probs)
|
355 |
+
|
356 |
+
# Mask heads if we want to
|
357 |
+
if head_mask is not None:
|
358 |
+
attention_probs = attention_probs * head_mask
|
359 |
+
|
360 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
361 |
+
|
362 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
363 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
364 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
365 |
+
|
366 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
367 |
+
|
368 |
+
if self.is_decoder:
|
369 |
+
outputs = outputs + (past_key_value,)
|
370 |
+
return outputs
|
371 |
+
|
372 |
+
class BertSelfOutput(nn.Module):
|
373 |
+
def __init__(self, config):
|
374 |
+
super().__init__()
|
375 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
376 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
377 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
378 |
+
|
379 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
380 |
+
hidden_states = self.dense(hidden_states)
|
381 |
+
hidden_states = self.dropout(hidden_states)
|
382 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
383 |
+
return hidden_states
|
384 |
+
|
385 |
+
class BertAttention(nn.Module):
|
386 |
+
def __init__(self, config, position_embedding_type=None):
|
387 |
+
super().__init__()
|
388 |
+
self.self = BertSelfAttention(config, position_embedding_type=position_embedding_type)
|
389 |
+
self.output = BertSelfOutput(config)
|
390 |
+
self.pruned_heads = set()
|
391 |
+
|
392 |
+
def prune_heads(self, heads):
|
393 |
+
if len(heads) == 0:
|
394 |
+
return
|
395 |
+
heads, index = find_pruneable_heads_and_indices(
|
396 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
397 |
+
)
|
398 |
+
|
399 |
+
# Prune linear layers
|
400 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
401 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
402 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
403 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
404 |
+
|
405 |
+
# Update hyper params and store pruned heads
|
406 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
407 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
408 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
409 |
+
|
410 |
+
def forward(
|
411 |
+
self,
|
412 |
+
hidden_states: torch.Tensor,
|
413 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
414 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
415 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
416 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
417 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
418 |
+
output_attentions: Optional[bool] = False,
|
419 |
+
) -> Tuple[torch.Tensor]:
|
420 |
+
self_outputs = self.self(
|
421 |
+
hidden_states,
|
422 |
+
attention_mask,
|
423 |
+
head_mask,
|
424 |
+
encoder_hidden_states,
|
425 |
+
encoder_attention_mask,
|
426 |
+
past_key_value,
|
427 |
+
output_attentions,
|
428 |
+
)
|
429 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
430 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
431 |
+
return outputs
|
432 |
+
|
433 |
+
|
434 |
+
class BertIntermediate(nn.Module):
|
435 |
+
def __init__(self, config):
|
436 |
+
super().__init__()
|
437 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
438 |
+
if isinstance(config.hidden_act, str):
|
439 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
440 |
+
else:
|
441 |
+
self.intermediate_act_fn = config.hidden_act
|
442 |
+
|
443 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
444 |
+
hidden_states = self.dense(hidden_states)
|
445 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
446 |
+
return hidden_states
|
447 |
+
|
448 |
+
|
449 |
+
class BertOutputEx(nn.Module):
|
450 |
+
def __init__(self, config):
|
451 |
+
super().__init__()
|
452 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
453 |
+
|
454 |
+
self.dense_in_ex = nn.Linear(config.intermediate_size, config.ex_size)
|
455 |
+
self.dense_out_ex = nn.Linear(config.ex_size, config.hidden_size)
|
456 |
+
|
457 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
458 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
459 |
+
|
460 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
461 |
+
hidden_states_ori = self.dense(hidden_states)
|
462 |
+
|
463 |
+
hidden_states_ex = self.dense_in_ex(hidden_states)
|
464 |
+
hidden_states_ex = self.dense_out_ex(hidden_states_ex)
|
465 |
+
|
466 |
+
hidden_states_ori = self.dropout(hidden_states_ori)
|
467 |
+
|
468 |
+
hidden_states = self.LayerNorm(hidden_states_ori + hidden_states_ex + input_tensor)
|
469 |
+
return hidden_states
|
470 |
+
|
471 |
+
class BertOutput(nn.Module):
|
472 |
+
def __init__(self, config):
|
473 |
+
super().__init__()
|
474 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
475 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
476 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
477 |
+
|
478 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
479 |
+
hidden_states = self.dense(hidden_states)
|
480 |
+
hidden_states = self.dropout(hidden_states)
|
481 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
482 |
+
return hidden_states
|
483 |
+
|
484 |
+
class BertLayerEx(nn.Module):
|
485 |
+
def __init__(self, config):
|
486 |
+
super().__init__()
|
487 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
488 |
+
self.seq_len_dim = 1
|
489 |
+
self.attention = BertAttention(config)
|
490 |
+
self.is_decoder = config.is_decoder
|
491 |
+
self.add_cross_attention = config.add_cross_attention
|
492 |
+
if self.add_cross_attention:
|
493 |
+
if not self.is_decoder:
|
494 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
495 |
+
self.crossattention = BertAttention(config, position_embedding_type="absolute")
|
496 |
+
self.intermediate = BertIntermediate(config)
|
497 |
+
self.output = BertOutputEx(config)
|
498 |
+
|
499 |
+
def forward(
|
500 |
+
self,
|
501 |
+
hidden_states: torch.Tensor,
|
502 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
503 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
504 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
505 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
506 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
507 |
+
output_attentions: Optional[bool] = False,
|
508 |
+
) -> Tuple[torch.Tensor]:
|
509 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
510 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
511 |
+
self_attention_outputs = self.attention(
|
512 |
+
hidden_states,
|
513 |
+
attention_mask,
|
514 |
+
head_mask,
|
515 |
+
output_attentions=output_attentions,
|
516 |
+
past_key_value=self_attn_past_key_value,
|
517 |
+
)
|
518 |
+
attention_output = self_attention_outputs[0]
|
519 |
+
|
520 |
+
# if decoder, the last output is tuple of self-attn cache
|
521 |
+
if self.is_decoder:
|
522 |
+
outputs = self_attention_outputs[1:-1]
|
523 |
+
present_key_value = self_attention_outputs[-1]
|
524 |
+
else:
|
525 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
526 |
+
|
527 |
+
cross_attn_present_key_value = None
|
528 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
529 |
+
if not hasattr(self, "crossattention"):
|
530 |
+
raise ValueError(
|
531 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
532 |
+
" by setting `config.add_cross_attention=True`"
|
533 |
+
)
|
534 |
+
|
535 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
536 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
537 |
+
cross_attention_outputs = self.crossattention(
|
538 |
+
attention_output,
|
539 |
+
attention_mask,
|
540 |
+
head_mask,
|
541 |
+
encoder_hidden_states,
|
542 |
+
encoder_attention_mask,
|
543 |
+
cross_attn_past_key_value,
|
544 |
+
output_attentions,
|
545 |
+
)
|
546 |
+
attention_output = cross_attention_outputs[0]
|
547 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
548 |
+
|
549 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
550 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
551 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
552 |
+
|
553 |
+
layer_output = apply_chunking_to_forward(
|
554 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
555 |
+
)
|
556 |
+
outputs = (layer_output,) + outputs
|
557 |
+
|
558 |
+
# if decoder, return the attn key/values as the last output
|
559 |
+
if self.is_decoder:
|
560 |
+
outputs = outputs + (present_key_value,)
|
561 |
+
|
562 |
+
return outputs
|
563 |
+
|
564 |
+
def feed_forward_chunk(self, attention_output):
|
565 |
+
intermediate_output = self.intermediate(attention_output)
|
566 |
+
layer_output = self.output(intermediate_output, attention_output)
|
567 |
+
return layer_output
|
568 |
+
|
569 |
+
class BertLayer(nn.Module):
|
570 |
+
def __init__(self, config):
|
571 |
+
super().__init__()
|
572 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
573 |
+
self.seq_len_dim = 1
|
574 |
+
self.attention = BertAttention(config)
|
575 |
+
self.is_decoder = config.is_decoder
|
576 |
+
self.add_cross_attention = config.add_cross_attention
|
577 |
+
if self.add_cross_attention:
|
578 |
+
if not self.is_decoder:
|
579 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
580 |
+
self.crossattention = BertAttention(config, position_embedding_type="absolute")
|
581 |
+
self.intermediate = BertIntermediate(config)
|
582 |
+
self.output = BertOutput(config)
|
583 |
+
|
584 |
+
def forward(
|
585 |
+
self,
|
586 |
+
hidden_states: torch.Tensor,
|
587 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
588 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
589 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
590 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
591 |
+
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
592 |
+
output_attentions: Optional[bool] = False,
|
593 |
+
) -> Tuple[torch.Tensor]:
|
594 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
595 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
596 |
+
self_attention_outputs = self.attention(
|
597 |
+
hidden_states,
|
598 |
+
attention_mask,
|
599 |
+
head_mask,
|
600 |
+
output_attentions=output_attentions,
|
601 |
+
past_key_value=self_attn_past_key_value,
|
602 |
+
)
|
603 |
+
attention_output = self_attention_outputs[0]
|
604 |
+
|
605 |
+
# if decoder, the last output is tuple of self-attn cache
|
606 |
+
if self.is_decoder:
|
607 |
+
outputs = self_attention_outputs[1:-1]
|
608 |
+
present_key_value = self_attention_outputs[-1]
|
609 |
+
else:
|
610 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
611 |
+
|
612 |
+
cross_attn_present_key_value = None
|
613 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
614 |
+
if not hasattr(self, "crossattention"):
|
615 |
+
raise ValueError(
|
616 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
617 |
+
" by setting `config.add_cross_attention=True`"
|
618 |
+
)
|
619 |
+
|
620 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
621 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
622 |
+
cross_attention_outputs = self.crossattention(
|
623 |
+
attention_output,
|
624 |
+
attention_mask,
|
625 |
+
head_mask,
|
626 |
+
encoder_hidden_states,
|
627 |
+
encoder_attention_mask,
|
628 |
+
cross_attn_past_key_value,
|
629 |
+
output_attentions,
|
630 |
+
)
|
631 |
+
attention_output = cross_attention_outputs[0]
|
632 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
633 |
+
|
634 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
635 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
636 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
637 |
+
|
638 |
+
layer_output = apply_chunking_to_forward(
|
639 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
640 |
+
)
|
641 |
+
outputs = (layer_output,) + outputs
|
642 |
+
|
643 |
+
# if decoder, return the attn key/values as the last output
|
644 |
+
if self.is_decoder:
|
645 |
+
outputs = outputs + (present_key_value,)
|
646 |
+
|
647 |
+
return outputs
|
648 |
+
|
649 |
+
def feed_forward_chunk(self, attention_output):
|
650 |
+
intermediate_output = self.intermediate(attention_output)
|
651 |
+
layer_output = self.output(intermediate_output, attention_output)
|
652 |
+
return layer_output
|
653 |
+
|
654 |
+
class BertEncoder(nn.Module):
|
655 |
+
def __init__(self, config):
|
656 |
+
super().__init__()
|
657 |
+
self.config = config
|
658 |
+
kb_layer = self.config.kb_layer
|
659 |
+
self.layer = nn.ModuleList([BertLayerEx(config) if i in kb_layer else BertLayer(config) for i in range(config.num_hidden_layers)])
|
660 |
+
self.gradient_checkpointing = False
|
661 |
+
|
662 |
+
def forward(
|
663 |
+
self,
|
664 |
+
hidden_states: torch.Tensor,
|
665 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
666 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
667 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
668 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
669 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
670 |
+
use_cache: Optional[bool] = None,
|
671 |
+
output_attentions: Optional[bool] = False,
|
672 |
+
output_hidden_states: Optional[bool] = False,
|
673 |
+
return_dict: Optional[bool] = True,
|
674 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
|
675 |
+
all_hidden_states = () if output_hidden_states else None
|
676 |
+
all_self_attentions = () if output_attentions else None
|
677 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
678 |
+
|
679 |
+
next_decoder_cache = () if use_cache else None
|
680 |
+
for i, layer_module in enumerate(self.layer):
|
681 |
+
if output_hidden_states:
|
682 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
683 |
+
|
684 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
685 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
686 |
+
|
687 |
+
if self.gradient_checkpointing and self.training:
|
688 |
+
|
689 |
+
if use_cache:
|
690 |
+
logger.warning(
|
691 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
692 |
+
)
|
693 |
+
use_cache = False
|
694 |
+
|
695 |
+
def create_custom_forward(module):
|
696 |
+
def custom_forward(*inputs):
|
697 |
+
return module(*inputs, past_key_value, output_attentions)
|
698 |
+
|
699 |
+
return custom_forward
|
700 |
+
|
701 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
702 |
+
create_custom_forward(layer_module),
|
703 |
+
hidden_states,
|
704 |
+
attention_mask,
|
705 |
+
layer_head_mask,
|
706 |
+
encoder_hidden_states,
|
707 |
+
encoder_attention_mask,
|
708 |
+
)
|
709 |
+
else:
|
710 |
+
layer_outputs = layer_module(
|
711 |
+
hidden_states,
|
712 |
+
attention_mask,
|
713 |
+
layer_head_mask,
|
714 |
+
encoder_hidden_states,
|
715 |
+
encoder_attention_mask,
|
716 |
+
past_key_value,
|
717 |
+
output_attentions,
|
718 |
+
)
|
719 |
+
|
720 |
+
hidden_states = layer_outputs[0]
|
721 |
+
if use_cache:
|
722 |
+
next_decoder_cache += (layer_outputs[-1],)
|
723 |
+
if output_attentions:
|
724 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
725 |
+
if self.config.add_cross_attention:
|
726 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
727 |
+
|
728 |
+
if output_hidden_states:
|
729 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
730 |
+
|
731 |
+
if not return_dict:
|
732 |
+
return tuple(
|
733 |
+
v
|
734 |
+
for v in [
|
735 |
+
hidden_states,
|
736 |
+
next_decoder_cache,
|
737 |
+
all_hidden_states,
|
738 |
+
all_self_attentions,
|
739 |
+
all_cross_attentions,
|
740 |
+
]
|
741 |
+
if v is not None
|
742 |
+
)
|
743 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
744 |
+
last_hidden_state=hidden_states,
|
745 |
+
past_key_values=next_decoder_cache,
|
746 |
+
hidden_states=all_hidden_states,
|
747 |
+
attentions=all_self_attentions,
|
748 |
+
cross_attentions=all_cross_attentions,
|
749 |
+
)
|
750 |
+
|
751 |
+
|
752 |
+
class BertPooler(nn.Module):
|
753 |
+
def __init__(self, config):
|
754 |
+
super().__init__()
|
755 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
756 |
+
self.activation = nn.Tanh()
|
757 |
+
|
758 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
759 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
760 |
+
# to the first token.
|
761 |
+
first_token_tensor = hidden_states[:, 0]
|
762 |
+
pooled_output = self.dense(first_token_tensor)
|
763 |
+
pooled_output = self.activation(pooled_output)
|
764 |
+
return pooled_output
|
765 |
+
|
766 |
+
class BertPredictionHeadTransform(nn.Module):
|
767 |
+
def __init__(self, config):
|
768 |
+
super().__init__()
|
769 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
770 |
+
if isinstance(config.hidden_act, str):
|
771 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
772 |
+
else:
|
773 |
+
self.transform_act_fn = config.hidden_act
|
774 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
775 |
+
|
776 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
777 |
+
hidden_states = self.dense(hidden_states)
|
778 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
779 |
+
hidden_states = self.LayerNorm(hidden_states)
|
780 |
+
return hidden_states
|
781 |
+
|
782 |
+
class BertLMPredictionHead(nn.Module):
|
783 |
+
def __init__(self, config):
|
784 |
+
super().__init__()
|
785 |
+
self.transform = BertPredictionHeadTransform(config)
|
786 |
+
|
787 |
+
# The output weights are the same as the input embeddings, but there is
|
788 |
+
# an output-only bias for each token.
|
789 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
790 |
+
|
791 |
+
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
|
792 |
+
|
793 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
794 |
+
self.decoder.bias = self.bias
|
795 |
+
|
796 |
+
def forward(self, hidden_states):
|
797 |
+
hidden_states = self.transform(hidden_states)
|
798 |
+
hidden_states = self.decoder(hidden_states)
|
799 |
+
return hidden_states
|
800 |
+
|
801 |
+
class BertOnlyMLMHead(nn.Module):
|
802 |
+
def __init__(self, config):
|
803 |
+
super().__init__()
|
804 |
+
self.predictions = BertLMPredictionHead(config)
|
805 |
+
|
806 |
+
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
|
807 |
+
prediction_scores = self.predictions(sequence_output)
|
808 |
+
return prediction_scores
|
809 |
+
|
810 |
+
class BertPreTrainedModel(PreTrainedModel):
|
811 |
+
"""
|
812 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
813 |
+
models.
|
814 |
+
"""
|
815 |
+
|
816 |
+
config_class = BertConfig
|
817 |
+
load_tf_weights = load_tf_weights_in_bert
|
818 |
+
base_model_prefix = "bert"
|
819 |
+
supports_gradient_checkpointing = True
|
820 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
821 |
+
|
822 |
+
def _init_weights(self, module):
|
823 |
+
"""Initialize the weights"""
|
824 |
+
if isinstance(module, nn.Linear):
|
825 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
826 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
827 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
828 |
+
if module.bias is not None:
|
829 |
+
module.bias.data.zero_()
|
830 |
+
elif isinstance(module, nn.Embedding):
|
831 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
832 |
+
if module.padding_idx is not None:
|
833 |
+
module.weight.data[module.padding_idx].zero_()
|
834 |
+
elif isinstance(module, nn.LayerNorm):
|
835 |
+
module.bias.data.zero_()
|
836 |
+
module.weight.data.fill_(1.0)
|
837 |
+
|
838 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
839 |
+
if isinstance(module, BertEncoder):
|
840 |
+
module.gradient_checkpointing = value
|
841 |
+
|
842 |
+
|
843 |
+
@dataclass
|
844 |
+
class BertForPreTrainingOutput(ModelOutput):
|
845 |
+
"""
|
846 |
+
Output type of [`BertForPreTraining`].
|
847 |
+
|
848 |
+
Args:
|
849 |
+
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
850 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
851 |
+
(classification) loss.
|
852 |
+
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
853 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
854 |
+
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
|
855 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
856 |
+
before SoftMax).
|
857 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
858 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
859 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
860 |
+
|
861 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
862 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
863 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
864 |
+
sequence_length)`.
|
865 |
+
|
866 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
867 |
+
heads.
|
868 |
+
"""
|
869 |
+
|
870 |
+
loss: Optional[torch.FloatTensor] = None
|
871 |
+
prediction_logits: torch.FloatTensor = None
|
872 |
+
seq_relationship_logits: torch.FloatTensor = None
|
873 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
874 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
875 |
+
|
876 |
+
|
877 |
+
BERT_START_DOCSTRING = r"""
|
878 |
+
|
879 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
880 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
881 |
+
etc.)
|
882 |
+
|
883 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
884 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
885 |
+
and behavior.
|
886 |
+
|
887 |
+
Parameters:
|
888 |
+
config ([`BertConfig`]): Model configuration class with all the parameters of the model.
|
889 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
890 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
891 |
+
"""
|
892 |
+
|
893 |
+
BERT_INPUTS_DOCSTRING = r"""
|
894 |
+
Args:
|
895 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
896 |
+
Indices of input sequence tokens in the vocabulary.
|
897 |
+
|
898 |
+
Indices can be obtained using [`BertTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
899 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
900 |
+
|
901 |
+
[What are input IDs?](../glossary#input-ids)
|
902 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
903 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
904 |
+
|
905 |
+
- 1 for tokens that are **not masked**,
|
906 |
+
- 0 for tokens that are **masked**.
|
907 |
+
|
908 |
+
[What are attention masks?](../glossary#attention-mask)
|
909 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
910 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
911 |
+
1]`:
|
912 |
+
|
913 |
+
- 0 corresponds to a *sentence A* token,
|
914 |
+
- 1 corresponds to a *sentence B* token.
|
915 |
+
|
916 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
917 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
918 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
919 |
+
config.max_position_embeddings - 1]`.
|
920 |
+
|
921 |
+
[What are position IDs?](../glossary#position-ids)
|
922 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
923 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
924 |
+
|
925 |
+
- 1 indicates the head is **not masked**,
|
926 |
+
- 0 indicates the head is **masked**.
|
927 |
+
|
928 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
929 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
930 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
931 |
+
model's internal embedding lookup matrix.
|
932 |
+
output_attentions (`bool`, *optional*):
|
933 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
934 |
+
tensors for more detail.
|
935 |
+
output_hidden_states (`bool`, *optional*):
|
936 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
937 |
+
more detail.
|
938 |
+
return_dict (`bool`, *optional*):
|
939 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
940 |
+
"""
|
941 |
+
|
942 |
+
@add_start_docstrings(
|
943 |
+
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
|
944 |
+
BERT_START_DOCSTRING,
|
945 |
+
)
|
946 |
+
class BertModel(BertPreTrainedModel):
|
947 |
+
"""
|
948 |
+
|
949 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
950 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
951 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
952 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
953 |
+
|
954 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
|
955 |
+
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
|
956 |
+
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
|
957 |
+
"""
|
958 |
+
|
959 |
+
def __init__(self, config, add_pooling_layer=True):
|
960 |
+
super().__init__(config)
|
961 |
+
self.config = config
|
962 |
+
|
963 |
+
self.embeddings = BertEmbeddings(config)
|
964 |
+
self.encoder = BertEncoder(config)
|
965 |
+
|
966 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
967 |
+
|
968 |
+
# Initialize weights and apply final processing
|
969 |
+
self.post_init()
|
970 |
+
|
971 |
+
def get_input_embeddings(self):
|
972 |
+
return self.embeddings.word_embeddings
|
973 |
+
|
974 |
+
def set_input_embeddings(self, value):
|
975 |
+
self.embeddings.word_embeddings = value
|
976 |
+
|
977 |
+
def _prune_heads(self, heads_to_prune):
|
978 |
+
"""
|
979 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
980 |
+
class PreTrainedModel
|
981 |
+
"""
|
982 |
+
for layer, heads in heads_to_prune.items():
|
983 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
984 |
+
|
985 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
986 |
+
@add_code_sample_docstrings(
|
987 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
988 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
989 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
990 |
+
config_class=_CONFIG_FOR_DOC,
|
991 |
+
)
|
992 |
+
def forward(
|
993 |
+
self,
|
994 |
+
input_ids: Optional[torch.Tensor] = None,
|
995 |
+
attention_mask: Optional[torch.Tensor] = None,
|
996 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
997 |
+
position_ids: Optional[torch.Tensor] = None,
|
998 |
+
head_mask: Optional[torch.Tensor] = None,
|
999 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1000 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1001 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1002 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1003 |
+
use_cache: Optional[bool] = None,
|
1004 |
+
output_attentions: Optional[bool] = None,
|
1005 |
+
output_hidden_states: Optional[bool] = None,
|
1006 |
+
return_dict: Optional[bool] = None,
|
1007 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
|
1008 |
+
r"""
|
1009 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1010 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
1011 |
+
the model is configured as a decoder.
|
1012 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1013 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1014 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1015 |
+
|
1016 |
+
- 1 for tokens that are **not masked**,
|
1017 |
+
- 0 for tokens that are **masked**.
|
1018 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1019 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1020 |
+
|
1021 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1022 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1023 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1024 |
+
use_cache (`bool`, *optional*):
|
1025 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1026 |
+
`past_key_values`).
|
1027 |
+
"""
|
1028 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1029 |
+
output_hidden_states = (
|
1030 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1031 |
+
)
|
1032 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1033 |
+
|
1034 |
+
if self.config.is_decoder:
|
1035 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1036 |
+
else:
|
1037 |
+
use_cache = False
|
1038 |
+
|
1039 |
+
if input_ids is not None and inputs_embeds is not None:
|
1040 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1041 |
+
elif input_ids is not None:
|
1042 |
+
input_shape = input_ids.size()
|
1043 |
+
elif inputs_embeds is not None:
|
1044 |
+
input_shape = inputs_embeds.size()[:-1]
|
1045 |
+
else:
|
1046 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1047 |
+
|
1048 |
+
batch_size, seq_length = input_shape
|
1049 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1050 |
+
|
1051 |
+
# past_key_values_length
|
1052 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
1053 |
+
|
1054 |
+
if attention_mask is None:
|
1055 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
1056 |
+
|
1057 |
+
if token_type_ids is None:
|
1058 |
+
if hasattr(self.embeddings, "token_type_ids"):
|
1059 |
+
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
|
1060 |
+
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
|
1061 |
+
token_type_ids = buffered_token_type_ids_expanded
|
1062 |
+
else:
|
1063 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
1064 |
+
|
1065 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1066 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1067 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
|
1068 |
+
|
1069 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
1070 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1071 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
1072 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
1073 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
1074 |
+
if encoder_attention_mask is None:
|
1075 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
1076 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
1077 |
+
else:
|
1078 |
+
encoder_extended_attention_mask = None
|
1079 |
+
|
1080 |
+
# Prepare head mask if needed
|
1081 |
+
# 1.0 in head_mask indicate we keep the head
|
1082 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1083 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1084 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1085 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1086 |
+
|
1087 |
+
embedding_output = self.embeddings(
|
1088 |
+
input_ids=input_ids,
|
1089 |
+
position_ids=position_ids,
|
1090 |
+
token_type_ids=token_type_ids,
|
1091 |
+
inputs_embeds=inputs_embeds,
|
1092 |
+
past_key_values_length=past_key_values_length,
|
1093 |
+
)
|
1094 |
+
encoder_outputs = self.encoder(
|
1095 |
+
embedding_output,
|
1096 |
+
attention_mask=extended_attention_mask,
|
1097 |
+
head_mask=head_mask,
|
1098 |
+
encoder_hidden_states=encoder_hidden_states,
|
1099 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1100 |
+
past_key_values=past_key_values,
|
1101 |
+
use_cache=use_cache,
|
1102 |
+
output_attentions=output_attentions,
|
1103 |
+
output_hidden_states=output_hidden_states,
|
1104 |
+
return_dict=return_dict,
|
1105 |
+
)
|
1106 |
+
sequence_output = encoder_outputs[0]
|
1107 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1108 |
+
|
1109 |
+
if not return_dict:
|
1110 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1111 |
+
|
1112 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1113 |
+
last_hidden_state=sequence_output,
|
1114 |
+
pooler_output=pooled_output,
|
1115 |
+
past_key_values=encoder_outputs.past_key_values,
|
1116 |
+
hidden_states=encoder_outputs.hidden_states,
|
1117 |
+
attentions=encoder_outputs.attentions,
|
1118 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1119 |
+
)
|
1120 |
+
|
1121 |
+
@add_start_docstrings("""Bert Model with a `language modeling` head on top.""", BERT_START_DOCSTRING)
|
1122 |
+
class EXBertForMaskedLM(BertPreTrainedModel):
|
1123 |
+
|
1124 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1125 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
1126 |
+
|
1127 |
+
def __init__(self, config):
|
1128 |
+
super().__init__(config)
|
1129 |
+
|
1130 |
+
if config.is_decoder:
|
1131 |
+
logger.warning(
|
1132 |
+
"If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for "
|
1133 |
+
"bi-directional self-attention."
|
1134 |
+
)
|
1135 |
+
|
1136 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
1137 |
+
self.cls = BertOnlyMLMHead(config)
|
1138 |
+
|
1139 |
+
# Initialize weights and apply final processing
|
1140 |
+
self.post_init()
|
1141 |
+
|
1142 |
+
def get_output_embeddings(self):
|
1143 |
+
return self.cls.predictions.decoder
|
1144 |
+
|
1145 |
+
def set_output_embeddings(self, new_embeddings):
|
1146 |
+
self.cls.predictions.decoder = new_embeddings
|
1147 |
+
|
1148 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1149 |
+
@add_code_sample_docstrings(
|
1150 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1151 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1152 |
+
output_type=MaskedLMOutput,
|
1153 |
+
config_class=_CONFIG_FOR_DOC,
|
1154 |
+
expected_output="'paris'",
|
1155 |
+
expected_loss=0.88,
|
1156 |
+
)
|
1157 |
+
def forward(
|
1158 |
+
self,
|
1159 |
+
input_ids: Optional[torch.Tensor] = None,
|
1160 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1161 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1162 |
+
position_ids: Optional[torch.Tensor] = None,
|
1163 |
+
head_mask: Optional[torch.Tensor] = None,
|
1164 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1165 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1166 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1167 |
+
labels: Optional[torch.Tensor] = None,
|
1168 |
+
output_attentions: Optional[bool] = None,
|
1169 |
+
output_hidden_states: Optional[bool] = None,
|
1170 |
+
return_dict: Optional[bool] = None,
|
1171 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
1172 |
+
r"""
|
1173 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1174 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1175 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1176 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1177 |
+
"""
|
1178 |
+
|
1179 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1180 |
+
|
1181 |
+
outputs = self.bert(
|
1182 |
+
input_ids,
|
1183 |
+
attention_mask=attention_mask,
|
1184 |
+
token_type_ids=token_type_ids,
|
1185 |
+
position_ids=position_ids,
|
1186 |
+
head_mask=head_mask,
|
1187 |
+
inputs_embeds=inputs_embeds,
|
1188 |
+
encoder_hidden_states=encoder_hidden_states,
|
1189 |
+
encoder_attention_mask=encoder_attention_mask,
|
1190 |
+
output_attentions=output_attentions,
|
1191 |
+
output_hidden_states=output_hidden_states,
|
1192 |
+
return_dict=return_dict,
|
1193 |
+
)
|
1194 |
+
|
1195 |
+
sequence_output = outputs[0]
|
1196 |
+
prediction_scores = self.cls(sequence_output)
|
1197 |
+
# pos = (input_ids == self.config.mask_token_id).nonzero(as_tuple=True)
|
1198 |
+
|
1199 |
+
masked_lm_loss = None
|
1200 |
+
if labels is not None:
|
1201 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1202 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
1203 |
+
# masked_lm_loss = loss_fct(prediction_scores[pos[0], pos[1], :].view(-1, self.config.vocab_size), labels.view(-1))
|
1204 |
+
|
1205 |
+
if not return_dict:
|
1206 |
+
output = (prediction_scores,) + outputs[2:]
|
1207 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1208 |
+
|
1209 |
+
return MaskedLMOutput(
|
1210 |
+
loss=masked_lm_loss,
|
1211 |
+
logits=prediction_scores,
|
1212 |
+
hidden_states=outputs.hidden_states,
|
1213 |
+
attentions=outputs.attentions,
|
1214 |
+
)
|
1215 |
+
|
1216 |
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
|
1217 |
+
input_shape = input_ids.shape
|
1218 |
+
effective_batch_size = input_shape[0]
|
1219 |
+
|
1220 |
+
# add a dummy token
|
1221 |
+
if self.config.pad_token_id is None:
|
1222 |
+
raise ValueError("The PAD token should be defined for generation")
|
1223 |
+
|
1224 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
|
1225 |
+
dummy_token = torch.full(
|
1226 |
+
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
|
1227 |
+
)
|
1228 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
1229 |
+
|
1230 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
1231 |
+
|
1232 |
+
@add_start_docstrings(
|
1233 |
+
"""
|
1234 |
+
Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
|
1235 |
+
output) e.g. for GLUE tasks.
|
1236 |
+
""",
|
1237 |
+
BERT_START_DOCSTRING,
|
1238 |
+
)
|
1239 |
+
class EXBertForSequenceClassification(BertPreTrainedModel):
|
1240 |
+
def __init__(self, config):
|
1241 |
+
super().__init__(config)
|
1242 |
+
self.num_labels = config.num_labels
|
1243 |
+
self.config = config
|
1244 |
+
|
1245 |
+
self.bert = BertModel(config)
|
1246 |
+
classifier_dropout = (
|
1247 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1248 |
+
)
|
1249 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1250 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1251 |
+
|
1252 |
+
# Initialize weights and apply final processing
|
1253 |
+
self.post_init()
|
1254 |
+
|
1255 |
+
@add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1256 |
+
@add_code_sample_docstrings(
|
1257 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1258 |
+
checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
|
1259 |
+
output_type=SequenceClassifierOutput,
|
1260 |
+
config_class=_CONFIG_FOR_DOC,
|
1261 |
+
expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
|
1262 |
+
expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
|
1263 |
+
)
|
1264 |
+
def forward(
|
1265 |
+
self,
|
1266 |
+
input_ids: Optional[torch.Tensor] = None,
|
1267 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1268 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1269 |
+
position_ids: Optional[torch.Tensor] = None,
|
1270 |
+
head_mask: Optional[torch.Tensor] = None,
|
1271 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1272 |
+
labels: Optional[torch.Tensor] = None,
|
1273 |
+
output_attentions: Optional[bool] = None,
|
1274 |
+
output_hidden_states: Optional[bool] = None,
|
1275 |
+
return_dict: Optional[bool] = None,
|
1276 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1277 |
+
r"""
|
1278 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1279 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1280 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1281 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1282 |
+
"""
|
1283 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1284 |
+
|
1285 |
+
outputs = self.bert(
|
1286 |
+
input_ids,
|
1287 |
+
attention_mask=attention_mask,
|
1288 |
+
token_type_ids=token_type_ids,
|
1289 |
+
position_ids=position_ids,
|
1290 |
+
head_mask=head_mask,
|
1291 |
+
inputs_embeds=inputs_embeds,
|
1292 |
+
output_attentions=output_attentions,
|
1293 |
+
output_hidden_states=output_hidden_states,
|
1294 |
+
return_dict=return_dict,
|
1295 |
+
)
|
1296 |
+
|
1297 |
+
pooled_output = outputs[1]
|
1298 |
+
|
1299 |
+
pooled_output = self.dropout(pooled_output)
|
1300 |
+
logits = self.classifier(pooled_output)
|
1301 |
+
|
1302 |
+
loss = None
|
1303 |
+
if labels is not None:
|
1304 |
+
if self.config.problem_type is None:
|
1305 |
+
if self.num_labels == 1:
|
1306 |
+
self.config.problem_type = "regression"
|
1307 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1308 |
+
self.config.problem_type = "single_label_classification"
|
1309 |
+
else:
|
1310 |
+
self.config.problem_type = "multi_label_classification"
|
1311 |
+
|
1312 |
+
if self.config.problem_type == "regression":
|
1313 |
+
loss_fct = MSELoss()
|
1314 |
+
if self.num_labels == 1:
|
1315 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1316 |
+
else:
|
1317 |
+
loss = loss_fct(logits, labels)
|
1318 |
+
elif self.config.problem_type == "single_label_classification":
|
1319 |
+
loss_fct = CrossEntropyLoss()
|
1320 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1321 |
+
elif self.config.problem_type == "multi_label_classification":
|
1322 |
+
loss_fct = BCEWithLogitsLoss()
|
1323 |
+
loss = loss_fct(logits, labels)
|
1324 |
+
if not return_dict:
|
1325 |
+
output = (logits,) + outputs[2:]
|
1326 |
+
return ((loss,) + output) if loss is not None else output
|
1327 |
+
|
1328 |
+
return SequenceClassifierOutput(
|
1329 |
+
loss=loss,
|
1330 |
+
logits=logits,
|
1331 |
+
hidden_states=outputs.hidden_states,
|
1332 |
+
attentions=outputs.attentions,
|
1333 |
+
)
|
1334 |
+
|
1335 |
+
bert_mapping = {
|
1336 |
+
'FT': EXBertForSequenceClassification,
|
1337 |
+
'PT': EXBertForMaskedLM
|
1338 |
+
}
|
src/models/__pycache__/one_shot_learner.cpython-38.pyc
ADDED
Binary file (4.19 kB). View file
|
|
src/models/one_shot_learner.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from allennlp.modules.feedforward import FeedForward
|
3 |
+
from allennlp.modules.seq2vec_encoders import PytorchSeq2VecWrapper
|
4 |
+
from higher.patch import monkeypatch as make_functional
|
5 |
+
|
6 |
+
|
7 |
+
class ConditionedParameter(torch.nn.Module):
|
8 |
+
def __init__(self, parameter, condition_dim=1024, hidden_dim=128, max_scale=1):
|
9 |
+
super().__init__()
|
10 |
+
self.parameter_shape = parameter.shape
|
11 |
+
|
12 |
+
if len(self.parameter_shape) == 2: # condition_dim是从lstm中得到的tensor,然后用linear学习返回到768作为更新的parm_dict
|
13 |
+
self.conditioners = torch.nn.Sequential(
|
14 |
+
torch.nn.utils.weight_norm(torch.nn.Linear(condition_dim, hidden_dim)),
|
15 |
+
torch.nn.Tanh(),
|
16 |
+
torch.nn.utils.weight_norm(
|
17 |
+
torch.nn.Linear(
|
18 |
+
hidden_dim, 2 * (parameter.shape[0] + parameter.shape[1]) + 1
|
19 |
+
)
|
20 |
+
),
|
21 |
+
)
|
22 |
+
elif len(self.parameter_shape) == 1:
|
23 |
+
self.conditioners = torch.nn.Sequential(
|
24 |
+
torch.nn.utils.weight_norm(torch.nn.Linear(condition_dim, hidden_dim)),
|
25 |
+
torch.nn.Tanh(),
|
26 |
+
torch.nn.utils.weight_norm(
|
27 |
+
torch.nn.Linear(hidden_dim, 2 * parameter.shape[0] + 1)
|
28 |
+
),
|
29 |
+
)
|
30 |
+
else:
|
31 |
+
raise RuntimeError()
|
32 |
+
|
33 |
+
self.max_scale = max_scale
|
34 |
+
|
35 |
+
def forward(self, inputs, grad):
|
36 |
+
|
37 |
+
if len(self.parameter_shape) == 2:
|
38 |
+
(
|
39 |
+
conditioner_cola,
|
40 |
+
conditioner_rowa,
|
41 |
+
conditioner_colb,
|
42 |
+
conditioner_rowb,
|
43 |
+
conditioner_norm,
|
44 |
+
) = self.conditioners(inputs).split(
|
45 |
+
[
|
46 |
+
self.parameter_shape[1],
|
47 |
+
self.parameter_shape[0],
|
48 |
+
self.parameter_shape[1],
|
49 |
+
self.parameter_shape[0],
|
50 |
+
1,
|
51 |
+
],
|
52 |
+
dim=-1,
|
53 |
+
)
|
54 |
+
|
55 |
+
a = conditioner_rowa.softmax(-1).T @ conditioner_cola
|
56 |
+
b = conditioner_rowb.softmax(-1).T @ conditioner_colb
|
57 |
+
|
58 |
+
elif len(self.parameter_shape) == 1:
|
59 |
+
a, b, conditioner_norm = self.conditioners(inputs).split(
|
60 |
+
[self.parameter_shape[0], self.parameter_shape[0], 1], dim=-1
|
61 |
+
)
|
62 |
+
else:
|
63 |
+
raise RuntimeError()
|
64 |
+
|
65 |
+
return (
|
66 |
+
self.max_scale
|
67 |
+
* torch.mean(conditioner_norm.sigmoid(), dim=0).squeeze() # 多条我们直接取mean
|
68 |
+
* (grad * a.squeeze() + b.squeeze())
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
class LSTMConditioner(torch.nn.Module):
|
73 |
+
def __init__(
|
74 |
+
self,
|
75 |
+
vocab_dim=30522,
|
76 |
+
embedding_dim=768,
|
77 |
+
hidden_dim=256,
|
78 |
+
output_dim=1024,
|
79 |
+
embedding_init=None,
|
80 |
+
):
|
81 |
+
super().__init__()
|
82 |
+
self.embedding = torch.nn.Embedding(
|
83 |
+
num_embeddings=vocab_dim,
|
84 |
+
embedding_dim=embedding_dim,
|
85 |
+
padding_idx=0,
|
86 |
+
_weight=embedding_init,
|
87 |
+
)
|
88 |
+
self.lstm = PytorchSeq2VecWrapper(
|
89 |
+
torch.nn.LSTM(
|
90 |
+
input_size=embedding_dim,
|
91 |
+
hidden_size=hidden_dim,
|
92 |
+
num_layers=1,
|
93 |
+
bidirectional=True,
|
94 |
+
batch_first=True,
|
95 |
+
)
|
96 |
+
)
|
97 |
+
self.linear = FeedForward(
|
98 |
+
input_dim=hidden_dim * 2,
|
99 |
+
num_layers=1,
|
100 |
+
hidden_dims=[output_dim],
|
101 |
+
activations=[torch.nn.Tanh()],
|
102 |
+
)
|
103 |
+
|
104 |
+
def forward(self, inputs, masks):
|
105 |
+
return self.linear(self.lstm(self.embedding(inputs), masks)) # 1, 64
|
106 |
+
|
107 |
+
|
108 |
+
class OneShotLearner(torch.nn.Module):
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
model,
|
112 |
+
vocab_dim=30522,
|
113 |
+
embedding_dim=768,
|
114 |
+
hidden_dim=128,
|
115 |
+
condition_dim=1024,
|
116 |
+
include_set={},
|
117 |
+
max_scale=1e-3,
|
118 |
+
embedding_init=None,
|
119 |
+
):
|
120 |
+
super().__init__()
|
121 |
+
|
122 |
+
self.param2conditioner_map = {
|
123 |
+
n: "{}_conditioner".format(n).replace(".", "_")
|
124 |
+
for n, p in model.named_parameters()
|
125 |
+
if n in include_set
|
126 |
+
}
|
127 |
+
|
128 |
+
self.conditioners = torch.nn.ModuleDict(
|
129 |
+
{
|
130 |
+
self.param2conditioner_map[n]: ConditionedParameter(
|
131 |
+
p,
|
132 |
+
condition_dim,
|
133 |
+
hidden_dim,
|
134 |
+
max_scale=max_scale,
|
135 |
+
)
|
136 |
+
for n, p in model.named_parameters()
|
137 |
+
if n in include_set
|
138 |
+
}
|
139 |
+
)
|
140 |
+
|
141 |
+
self.condition = LSTMConditioner(
|
142 |
+
vocab_dim,
|
143 |
+
embedding_dim,
|
144 |
+
hidden_dim,
|
145 |
+
condition_dim,
|
146 |
+
embedding_init=embedding_init,
|
147 |
+
)
|
148 |
+
|
149 |
+
def forward(self, inputs, masks, grads=None):
|
150 |
+
condition = self.condition(inputs, masks) # LSTM输出condition
|
151 |
+
return {
|
152 |
+
p: self.conditioners[self.param2conditioner_map[p]](
|
153 |
+
condition,
|
154 |
+
grad=grads[p] if grads else None,
|
155 |
+
)
|
156 |
+
for p, c in self.param2conditioner_map.items()
|
157 |
+
}
|