Spaces:
Sleeping
Sleeping
File size: 5,927 Bytes
7b9ab52 8d4c960 7b9ab52 91f0c9b 7b9ab52 8d4c960 7b9ab52 8d4c960 7b9ab52 8d4c960 7b9ab52 8d4c960 7b9ab52 8d4c960 7b9ab52 8d4c960 7b9ab52 8d4c960 7b9ab52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import streamlit as st
import json
import os
import re
import requests
import uuid
import time
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# Load the Hugging Face model
model_name = "ethicsadvisorproject/Llama-2-7b-ethical-chat-finetune"
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir="/tmp")
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto",
offload_folder="/tmp"
)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=200)
DB_DIR = 'user_data' # Directory to store individual user data
os.makedirs(DB_DIR, exist_ok=True) # Ensure the directory exists
def stream_data(textto):
for word in textto.split(" "):
yield word + " "
time.sleep(0.02)
def get_user_id():
"""Generate or retrieve a unique ID for the user."""
if "user_id" not in st.session_state:
st.session_state.user_id = str(uuid.uuid4()) # Generate a new UUID
return st.session_state.user_id
def get_user_file(user_id):
"""Return the file path for a user's data file ok."""
return os.path.join(DB_DIR, f"{user_id}.json")
def load_user_data(user_id):
"""Load chat history for the user."""
user_file = get_user_file(user_id)
if os.path.exists(user_file):
with open(user_file, 'r') as file:
return json.load(file)
return {"chat_history": []} # Default empty chat history
def save_user_data(user_id, data):
"""Save chat history for the user."""
user_file = get_user_file(user_id)
with open(user_file, 'w') as file:
json.dump(data, file)
def main():
endpoint_url = "https://zizytd-ethical-app-docker.hf.space/predict" # Endpoint URL from .env
user_id = get_user_id()
user_data = load_user_data(user_id)
# st.set_page_config(page_title='Ethical GPT Assistant', layout='wide',
# # initial_sidebar_state=st.session_state.get('sidebar_state', 'collapsed'),
# )
st.image("./logo/images.jpeg", use_container_width=True )
#st.snow()
intro = """
## Welcome to EthicsAdvisor
Ethical GPT is an AI-powered chatbot designed to interact with you in an ethical, safe, and responsible manner. Our goal is to ensure that all responses provided by the assistant are respectful and considerate of various societal and ethical standards.
Feel free to ask any questions, and rest assured that the assistant will provide helpful and appropriate responses.
"""
st.markdown(intro)
# Sidebar options
models = ["llama-ethical"]
st.sidebar.selectbox("Select Model", models, index=0)
st.sidebar.title("❄️EthicsAdvisor 📄")
st.sidebar.caption("Make AI to responde more ethical")
with st.sidebar.expander("See fine tuning info"):
st.caption("Original Data: [Data] (https://huggingface.co/datasets/MasahiroKaneko/eagle/)")
st.caption("Modified Data: [Data](https://huggingface.co/datasets/ethicsadvisorproject/ethical_data_bigger/) 📝")
st.caption("Used Model and Notebook: [Original model](https://huggingface.co/ethicsadvisorproject/Llama-2-7b-ethical-chat-finetune/) 🎈, Notebook used for fine tuning [Notebook](https://colab.research.google.com/drive/1eAAjdwwD0i-i9-ehEJYUKXvZoYK0T3ue#scrollTo=ib_We3NLtj2E)")
with st.sidebar.expander("ℹ️ **Take survey**"):
st.markdown("""You are welcome to give us your input on this research [here](https://forms.office.com/r/H4ARtETV2q).""")
cols = st.columns(2)
# Load chat history into session state
if "messages" not in st.session_state:
st.session_state.messages = user_data["chat_history"]
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# # User input
# # if prompt := st.chat_input("What is up?"):
# # st.session_state.messages.append({"role": "user", "content": prompt})
# # with st.chat_message("user"):
# # st.markdown(prompt)
# # # Send request to the endpoint
# # headers = {'ngrok-skip-browser-warning': 'true'}
# # data = {'messages': st.session_state.messages[-1]['content']}
# # try:
# # response = requests.post(endpoint_url, json=data, headers=headers)
# # response.raise_for_status() # Raise exception for HTTP errors
# # response_data = response.json()
# # response_text = response_data.get('response_text', '')
# # Clean response text
# message = re.sub(r'<s>\[INST\].*?\[/INST\]', '', response_text).strip()
# with st.chat_message("assistant"):
# st.markdown(message)
# st.session_state.messages.append({"role": "assistant", "content": message})
# except requests.exceptions.RequestException as e:
# st.error(f"Error communicating with the endpoint: {e}")
# except KeyError:
# st.error(f"Unexpected response format. Missing 'response_text' key. Received: {response.text}")
if prompt := st.chat_input("What is up?"):
response = pipe(f"<s>[INST] {prompt} [/INST]")
response_text = response[0]["generated_text"].replace("<s>[INST]", "").replace("[/INST]", "").strip()
with st.chat_message("assistant"):
st.markdown(response_text)
st.session_state.messages.append({"role": "assistant", "content": response_text})
# Save updated chat history
user_data["chat_history"] = st.session_state.messages
save_user_data(user_id, user_data)
# Clear Chat button
if st.sidebar.button('Clear Chat'):
st.session_state.messages = []
user_data["chat_history"] = []
save_user_data(user_id, user_data)
st.rerun()
if __name__ == '__main__':
main() |