ziyingsk commited on
Commit
68c232e
·
verified ·
1 Parent(s): 783936a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -10
app.py CHANGED
@@ -11,18 +11,12 @@ from langchain.prompts import PromptTemplate
11
  from sentence_transformers import SentenceTransformer
12
  import torch
13
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
14
- import logging
15
 
16
  # Set up environment, Pinecone is a database
17
- st.write(
18
- "Has environment variables been set:",
19
- os.environ["API_TOKEN"] == st.secrets["HUGGINGFACEHUB_API_TOKEN"] and
20
- os.environ["PINECONE_API_KEY"] == st.secrets["PINECONE_API_KEY"] and
21
- os.environ["Index_Name"] == st.secrets["Index_Name"])
22
- cache_dir = os.getenv("CACHE_DIR") # Directory for cache
23
- Huggingface_token = os.getenv("API_TOKEN") # Huggingface API key
24
- pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY")) # Database API key
25
- index = pc.Index(os.getenv("Index_Name")) # Database index name
26
 
27
  # Initialize embedding model (LLM will be saved to cache_dir if assigned)
28
  embedding_model = "all-mpnet-base-v2" # See link https://www.sbert.net/docs/pretrained_models.html
 
11
  from sentence_transformers import SentenceTransformer
12
  import torch
13
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
 
14
 
15
  # Set up environment, Pinecone is a database
16
+ cache_dir = None # Directory for cache
17
+ Huggingface_token = st.secrets["HUGGINGFACEHUB_API_TOKEN"] # Huggingface API key
18
+ pc = Pinecone(api_key=st.secrets["PINECONE_API_KEY"] # Database API key
19
+ index = pc.Index(st.secrets["Index_Name"]) # Database index name
 
 
 
 
 
20
 
21
  # Initialize embedding model (LLM will be saved to cache_dir if assigned)
22
  embedding_model = "all-mpnet-base-v2" # See link https://www.sbert.net/docs/pretrained_models.html