Update app.py
Browse files
app.py
CHANGED
@@ -11,18 +11,12 @@ from langchain.prompts import PromptTemplate
|
|
11 |
from sentence_transformers import SentenceTransformer
|
12 |
import torch
|
13 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
14 |
-
import logging
|
15 |
|
16 |
# Set up environment, Pinecone is a database
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
os.environ["Index_Name"] == st.secrets["Index_Name"])
|
22 |
-
cache_dir = os.getenv("CACHE_DIR") # Directory for cache
|
23 |
-
Huggingface_token = os.getenv("API_TOKEN") # Huggingface API key
|
24 |
-
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY")) # Database API key
|
25 |
-
index = pc.Index(os.getenv("Index_Name")) # Database index name
|
26 |
|
27 |
# Initialize embedding model (LLM will be saved to cache_dir if assigned)
|
28 |
embedding_model = "all-mpnet-base-v2" # See link https://www.sbert.net/docs/pretrained_models.html
|
|
|
11 |
from sentence_transformers import SentenceTransformer
|
12 |
import torch
|
13 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
14 |
|
15 |
# Set up environment, Pinecone is a database
|
16 |
+
cache_dir = None # Directory for cache
|
17 |
+
Huggingface_token = st.secrets["HUGGINGFACEHUB_API_TOKEN"] # Huggingface API key
|
18 |
+
pc = Pinecone(api_key=st.secrets["PINECONE_API_KEY"] # Database API key
|
19 |
+
index = pc.Index(st.secrets["Index_Name"]) # Database index name
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# Initialize embedding model (LLM will be saved to cache_dir if assigned)
|
22 |
embedding_model = "all-mpnet-base-v2" # See link https://www.sbert.net/docs/pretrained_models.html
|