Spaces:
Runtime error
Runtime error
snnetv2-semantic-segmentation
/
configs
/segnext
/segnext_mscan-t_1xb16-adamw-160k_ade20k-512x512.py
_base_ = [ | |
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py', | |
'../_base_/datasets/ade20k.py' | |
] | |
# model settings | |
checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segnext/mscan_t_20230227-119e8c9f.pth' # noqa | |
ham_norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) | |
crop_size = (512, 512) | |
data_preprocessor = dict( | |
type='SegDataPreProcessor', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
bgr_to_rgb=True, | |
pad_val=0, | |
seg_pad_val=255, | |
size=(512, 512), | |
test_cfg=dict(size_divisor=32)) | |
model = dict( | |
type='EncoderDecoder', | |
data_preprocessor=data_preprocessor, | |
pretrained=None, | |
backbone=dict( | |
type='MSCAN', | |
init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file), | |
embed_dims=[32, 64, 160, 256], | |
mlp_ratios=[8, 8, 4, 4], | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
depths=[3, 3, 5, 2], | |
attention_kernel_sizes=[5, [1, 7], [1, 11], [1, 21]], | |
attention_kernel_paddings=[2, [0, 3], [0, 5], [0, 10]], | |
act_cfg=dict(type='GELU'), | |
norm_cfg=dict(type='BN', requires_grad=True)), | |
decode_head=dict( | |
type='LightHamHead', | |
in_channels=[64, 160, 256], | |
in_index=[1, 2, 3], | |
channels=256, | |
ham_channels=256, | |
dropout_ratio=0.1, | |
num_classes=150, | |
norm_cfg=ham_norm_cfg, | |
align_corners=False, | |
loss_decode=dict( | |
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), | |
ham_kwargs=dict( | |
MD_S=1, | |
MD_R=16, | |
train_steps=6, | |
eval_steps=7, | |
inv_t=100, | |
rand_init=True)), | |
# model training and testing settings | |
train_cfg=dict(), | |
test_cfg=dict(mode='whole')) | |
# dataset settings | |
train_dataloader = dict(batch_size=16) | |
# optimizer | |
optim_wrapper = dict( | |
_delete_=True, | |
type='OptimWrapper', | |
optimizer=dict( | |
type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01), | |
paramwise_cfg=dict( | |
custom_keys={ | |
'pos_block': dict(decay_mult=0.), | |
'norm': dict(decay_mult=0.), | |
'head': dict(lr_mult=10.) | |
})) | |
param_scheduler = [ | |
dict( | |
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500), | |
dict( | |
type='PolyLR', | |
power=1.0, | |
begin=1500, | |
end=160000, | |
eta_min=0.0, | |
by_epoch=False, | |
) | |
] | |