Spaces:
Runtime error
Runtime error
snnetv2-semantic-segmentation
/
configs
/segnext
/segnext_mscan-s_1xb16-adamw-160k_ade20k-512x512.py
_base_ = './segnext_mscan-t_1xb16-adamw-160k_ade20k-512x512.py' | |
# model settings | |
checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segnext/mscan_s_20230227-f33ccdf2.pth' # noqa | |
ham_norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) | |
model = dict( | |
type='EncoderDecoder', | |
backbone=dict( | |
embed_dims=[64, 128, 320, 512], | |
depths=[2, 2, 4, 2], | |
init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file), | |
norm_cfg=dict(type='BN', requires_grad=True)), | |
decode_head=dict( | |
type='LightHamHead', | |
in_channels=[128, 320, 512], | |
in_index=[1, 2, 3], | |
channels=256, | |
ham_channels=256, | |
ham_kwargs=dict(MD_R=16), | |
dropout_ratio=0.1, | |
num_classes=150, | |
norm_cfg=ham_norm_cfg, | |
align_corners=False, | |
loss_decode=dict( | |
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), | |
# model training and testing settings | |
train_cfg=dict(), | |
test_cfg=dict(mode='whole')) | |