snnetv2-semantic-segmentation / configs /segnext /segnext_mscan-s_1xb16-adamw-160k_ade20k-512x512.py
HubHop
update
412c852
_base_ = './segnext_mscan-t_1xb16-adamw-160k_ade20k-512x512.py'
# model settings
checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segnext/mscan_s_20230227-f33ccdf2.pth' # noqa
ham_norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
model = dict(
type='EncoderDecoder',
backbone=dict(
embed_dims=[64, 128, 320, 512],
depths=[2, 2, 4, 2],
init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file),
norm_cfg=dict(type='BN', requires_grad=True)),
decode_head=dict(
type='LightHamHead',
in_channels=[128, 320, 512],
in_index=[1, 2, 3],
channels=256,
ham_channels=256,
ham_kwargs=dict(MD_R=16),
dropout_ratio=0.1,
num_classes=150,
norm_cfg=ham_norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
# model training and testing settings
train_cfg=dict(),
test_cfg=dict(mode='whole'))